Department of Neuroscience, Washington University School of Medicine, St Louis, MO 63110-1093, USA.
Department of Neuroscience, Washington University School of Medicine, St Louis, MO 63110-1093, USA.
Mol Cell. 2023 May 4;83(9):1412-1428.e7. doi: 10.1016/j.molcel.2023.04.001. Epub 2023 Apr 24.
During postnatal development, the DNA methyltransferase DNMT3A deposits high levels of non-CG cytosine methylation in neurons. This methylation is critical for transcriptional regulation, and loss of this mark is implicated in DNMT3A-associated neurodevelopmental disorders (NDDs). Here, we show in mice that genome topology and gene expression converge to shape histone H3 lysine 36 dimethylation (H3K36me2) profiles, which in turn recruit DNMT3A and pattern neuronal non-CG methylation. We show that NSD1, an H3K36 methyltransferase mutated in NDD, is required for the patterning of megabase-scale H3K36me2 and non-CG methylation in neurons. We find that brain-specific deletion of NSD1 causes altered DNA methylation that overlaps with DNMT3A disorder models to drive convergent dysregulation of key neuronal genes that may underlie shared phenotypes in NSD1- and DNMT3A-associated NDDs. Our findings indicate that H3K36me2 deposited by NSD1 is important for neuronal non-CG DNA methylation and suggest that the H3K36me2-DNMT3A-non-CG-methylation pathway is likely disrupted in NSD1-associated NDDs.
在出生后发育过程中,DNA 甲基转移酶 DNMT3A 在神经元中沉积高水平的非 CG 胞嘧啶甲基化。这种甲基化对于转录调控至关重要,而这种标记的丢失与 DNMT3A 相关的神经发育障碍 (NDD) 有关。在这里,我们在小鼠中表明,基因组拓扑结构和基因表达汇聚在一起形成组蛋白 H3 赖氨酸 36 二甲基化 (H3K36me2) 图谱,进而招募 DNMT3A 并对神经元中非 CG 甲基化进行模式化。我们表明,在 NDD 中突变的 H3K36 甲基转移酶 NSD1 是神经元中兆碱基规模的 H3K36me2 和非 CG 甲基化模式形成所必需的。我们发现,大脑特异性缺失 NSD1 会导致 DNA 甲基化改变,与 DNMT3A 紊乱模型重叠,从而导致关键神经元基因的协同失调,这可能是 NSD1 和 DNMT3A 相关 NDD 中共同表型的基础。我们的研究结果表明,NSD1 沉积的 H3K36me2 对于神经元中非 CG DNA 甲基化很重要,并表明 H3K36me2-DNMT3A-非 CG-甲基化途径可能在 NSD1 相关 NDD 中被破坏。