Suppr超能文献

NSD1 将组蛋白 H3 赖氨酸 36 二甲基化沉积到神经元中非 CG DNA 甲基化模式中。

NSD1 deposits histone H3 lysine 36 dimethylation to pattern non-CG DNA methylation in neurons.

机构信息

Department of Neuroscience, Washington University School of Medicine, St Louis, MO 63110-1093, USA.

Department of Neuroscience, Washington University School of Medicine, St Louis, MO 63110-1093, USA.

出版信息

Mol Cell. 2023 May 4;83(9):1412-1428.e7. doi: 10.1016/j.molcel.2023.04.001. Epub 2023 Apr 24.

Abstract

During postnatal development, the DNA methyltransferase DNMT3A deposits high levels of non-CG cytosine methylation in neurons. This methylation is critical for transcriptional regulation, and loss of this mark is implicated in DNMT3A-associated neurodevelopmental disorders (NDDs). Here, we show in mice that genome topology and gene expression converge to shape histone H3 lysine 36 dimethylation (H3K36me2) profiles, which in turn recruit DNMT3A and pattern neuronal non-CG methylation. We show that NSD1, an H3K36 methyltransferase mutated in NDD, is required for the patterning of megabase-scale H3K36me2 and non-CG methylation in neurons. We find that brain-specific deletion of NSD1 causes altered DNA methylation that overlaps with DNMT3A disorder models to drive convergent dysregulation of key neuronal genes that may underlie shared phenotypes in NSD1- and DNMT3A-associated NDDs. Our findings indicate that H3K36me2 deposited by NSD1 is important for neuronal non-CG DNA methylation and suggest that the H3K36me2-DNMT3A-non-CG-methylation pathway is likely disrupted in NSD1-associated NDDs.

摘要

在出生后发育过程中,DNA 甲基转移酶 DNMT3A 在神经元中沉积高水平的非 CG 胞嘧啶甲基化。这种甲基化对于转录调控至关重要,而这种标记的丢失与 DNMT3A 相关的神经发育障碍 (NDD) 有关。在这里,我们在小鼠中表明,基因组拓扑结构和基因表达汇聚在一起形成组蛋白 H3 赖氨酸 36 二甲基化 (H3K36me2) 图谱,进而招募 DNMT3A 并对神经元中非 CG 甲基化进行模式化。我们表明,在 NDD 中突变的 H3K36 甲基转移酶 NSD1 是神经元中兆碱基规模的 H3K36me2 和非 CG 甲基化模式形成所必需的。我们发现,大脑特异性缺失 NSD1 会导致 DNA 甲基化改变,与 DNMT3A 紊乱模型重叠,从而导致关键神经元基因的协同失调,这可能是 NSD1 和 DNMT3A 相关 NDD 中共同表型的基础。我们的研究结果表明,NSD1 沉积的 H3K36me2 对于神经元中非 CG DNA 甲基化很重要,并表明 H3K36me2-DNMT3A-非 CG-甲基化途径可能在 NSD1 相关 NDD 中被破坏。

相似文献

1
NSD1 deposits histone H3 lysine 36 dimethylation to pattern non-CG DNA methylation in neurons.
Mol Cell. 2023 May 4;83(9):1412-1428.e7. doi: 10.1016/j.molcel.2023.04.001. Epub 2023 Apr 24.
2
NSD1 deposits histone H3 lysine 36 dimethylation to pattern non-CG DNA methylation in neurons.
bioRxiv. 2023 Feb 17:2023.02.17.528965. doi: 10.1101/2023.02.17.528965.
3
The histone mark H3K36me2 recruits DNMT3A and shapes the intergenic DNA methylation landscape.
Nature. 2019 Sep;573(7773):281-286. doi: 10.1038/s41586-019-1534-3. Epub 2019 Sep 4.
4
Histone methylation mediated by NSD1 is required for the establishment and maintenance of neuronal identities.
Cell Rep. 2023 Dec 26;42(12):113496. doi: 10.1016/j.celrep.2023.113496. Epub 2023 Nov 22.
5
NSD1-deposited H3K36me2 directs de novo methylation in the mouse male germline and counteracts Polycomb-associated silencing.
Nat Genet. 2020 Oct;52(10):1088-1098. doi: 10.1038/s41588-020-0689-z. Epub 2020 Sep 14.
7
The H3.3 G34W oncohistone mutation increases K36 methylation by the protein lysine methyltransferase NSD1.
Biochimie. 2022 Jul;198:86-91. doi: 10.1016/j.biochi.2022.03.007. Epub 2022 Mar 24.
9
Ethanol induced acetylation of histone at G9a exon1 and G9a-mediated histone H3 dimethylation leads to neurodegeneration in neonatal mice.
Neuroscience. 2014 Jan 31;258:422-32. doi: 10.1016/j.neuroscience.2013.11.043. Epub 2013 Dec 1.
10
Inactivation and Mutation Drive a Convergence toward Loss of Function of H3K36 Writers in Clear Cell Renal Cell Carcinomas.
Cancer Res. 2017 Sep 15;77(18):4835-4845. doi: 10.1158/0008-5472.CAN-17-0143. Epub 2017 Jul 28.

引用本文的文献

1
Non-CG DNA methylation in animal genomes.
Nat Genet. 2025 Sep 11. doi: 10.1038/s41588-025-02303-1.
2
Mechanisms of brain overgrowth in autism spectrum disorder with macrocephaly.
Front Neurosci. 2025 Jun 6;19:1586550. doi: 10.3389/fnins.2025.1586550. eCollection 2025.
3
Chromatin modifiers in neurodevelopment.
Front Mol Neurosci. 2025 May 21;18:1551107. doi: 10.3389/fnmol.2025.1551107. eCollection 2025.
5
Overgrowth-intellectual disability disorders: progress in biology, patient advocacy and innovative therapies.
Dis Model Mech. 2025 May 1;18(5). doi: 10.1242/dmm.052300. Epub 2025 May 12.
6
Histone H3K36 methyltransferases NSD1 and SETD2 are required for brain development.
Hum Genet. 2025 May;144(5):529-543. doi: 10.1007/s00439-025-02740-2. Epub 2025 Apr 8.
8
The N-terminal region of DNMT3A engages the nucleosome surface to aid chromatin recruitment.
EMBO Rep. 2024 Dec;25(12):5743-5779. doi: 10.1038/s44319-024-00306-3. Epub 2024 Nov 11.

本文引用的文献

1
The disordered N-terminal domain of DNMT3A recognizes H2AK119ub and is required for postnatal development.
Nat Genet. 2022 May;54(5):625-636. doi: 10.1038/s41588-022-01063-6. Epub 2022 May 9.
3
DNA methylation atlas of the mouse brain at single-cell resolution.
Nature. 2021 Oct;598(7879):120-128. doi: 10.1038/s41586-020-03182-8. Epub 2021 Oct 6.
4
clusterProfiler 4.0: A universal enrichment tool for interpreting omics data.
Innovation (Camb). 2021 Jul 1;2(3):100141. doi: 10.1016/j.xinn.2021.100141. eCollection 2021 Aug 28.
5
Two competing mechanisms of DNMT3A recruitment regulate the dynamics of de novo DNA methylation at PRC1-targeted CpG islands.
Nat Genet. 2021 Jun;53(6):794-800. doi: 10.1038/s41588-021-00856-5. Epub 2021 May 13.
6
The interplay between DNA and histone methylation: molecular mechanisms and disease implications.
EMBO Rep. 2021 May 5;22(5):e51803. doi: 10.15252/embr.202051803. Epub 2021 Apr 12.
8
Emerging Insights into the Distinctive Neuronal Methylome.
Trends Genet. 2020 Nov;36(11):816-832. doi: 10.1016/j.tig.2020.07.009. Epub 2020 Aug 21.
9
An Activity-Mediated Transition in Transcription in Early Postnatal Neurons.
Neuron. 2020 Sep 9;107(5):874-890.e8. doi: 10.1016/j.neuron.2020.06.008. Epub 2020 Jun 25.
10
Large-Scale Exome Sequencing Study Implicates Both Developmental and Functional Changes in the Neurobiology of Autism.
Cell. 2020 Feb 6;180(3):568-584.e23. doi: 10.1016/j.cell.2019.12.036. Epub 2020 Jan 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验