Suppr超能文献

基于氮掺杂碳量子点的“关闭”型荧光传感器对肾上腺素的高选择性检测。

Highly selective detection of epinephrine by a "turn-off" fluorescent sensor based on N-doped carbon quantum dots.

机构信息

The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, PR China.

Zhejiang Univ Technol, Coll Chem Engn, State Key Lab Breeding Base Green Chem Synth Tech, Hangzhou 310032, PR China.

出版信息

Spectrochim Acta A Mol Biomol Spectrosc. 2023 Oct 5;298:122760. doi: 10.1016/j.saa.2023.122760. Epub 2023 Apr 19.

Abstract

Epinephrine (EP) is a catecholamine hormone with a variety of physiological activities. Monitoring the concentration of EP in drugs, food, biological samples and cosmetics is of great significance for their quality control. Herein, a novel fluorescence sensing method was designed for the high-specificity detection of EP based on N-doped carbon quantum dots (N-CDs). The EP could interact with the fluorescent senor of N-CDs which emits blue fluorescence to produce concentration- dependent fluorescence quenching through the photo-induced electron transfer (PET). The established sensing method has good linearity in the range of 0.5-10 μM with the LOD of 0.15 μM. More importantly, it is highly selective because similar components with phenolic hydroxyl groups or primary amino groups, even norepinephrine (NEP), could not interfere with the detection. This method can provide a low-cost, rapid and simple new way for the detection of EP, and has a good application prospect in point-of-care assay and in situ test.

摘要

肾上腺素(EP)是一种具有多种生理活性的儿茶酚胺激素。监测药物、食品、生物样本和化妆品中 EP 的浓度,对于它们的质量控制具有重要意义。在此,基于氮掺杂碳量子点(N-CDs),设计了一种新颖的荧光传感方法,用于 EP 的高特异性检测。EP 可以与 N-CDs 的荧光传感器相互作用,通过光诱导电子转移(PET)产生浓度依赖的荧光猝灭,使传感器发射出蓝色荧光。所建立的传感方法在 0.5-10 μM 范围内具有良好的线性关系,LOD 为 0.15 μM。更重要的是,它具有高度的选择性,因为具有酚羟基或伯氨基的类似成分,甚至去甲肾上腺素(NEP),也不会干扰检测。该方法可为 EP 的检测提供一种低成本、快速和简单的新方法,在即时检测和现场测试方面具有良好的应用前景。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验