Suppr超能文献

从标准化的恶性疟原虫人源化小鼠模型预测最佳抗疟药物组合。

Predicting Optimal Antimalarial Drug Combinations from a Standardized Plasmodium falciparum Humanized Mouse Model.

机构信息

Medicines for Malaria Venture, Geneva, Switzerland.

The Art of Discovery, Derio, Basque Country, Spain.

出版信息

Antimicrob Agents Chemother. 2023 Jun 15;67(6):e0157422. doi: 10.1128/aac.01574-22. Epub 2023 May 3.

Abstract

The development of new combinations of antimalarial drugs is urgently needed to prevent the spread of parasites resistant to drugs in clinical use and contribute to the control and eradication of malaria. In this work, we evaluated a standardized humanized mouse model of erythrocyte asexual stages of Plasmodium falciparum (PfalcHuMouse) for the selection of optimal drug combinations. First, we showed that the replication of P. falciparum was robust and highly reproducible in the PfalcHuMouse model by retrospective analysis of historical data. Second, we compared the relative value of parasite clearance from blood, parasite regrowth after suboptimal treatment (recrudescence), and cure as variables of therapeutic response to measure the contributions of partner drugs to combinations . To address the comparison, we first formalized and validated the day of recrudescence (DoR) as a new variable and found that there was a log-linear relationship with the number of viable parasites per mouse. Then, using historical data on monotherapy and two small cohorts of PfalcHuMice evaluated with ferroquine plus artefenomel or piperaquine plus artefenomel, we found that only measurements of parasite killing (i.e., cure of mice) as a function of drug exposure in blood allowed direct estimation of the individual drug contribution to efficacy by using multivariate statistical modeling and intuitive graphic displays. Overall, the analysis of parasite killing in the PfalcHuMouse model is a unique and robust experimental tool to inform the selection of optimal combinations by pharmacometric pharmacokinetic and pharmacodynamic (PK/PD) modeling.

摘要

需要开发新的抗疟药物组合,以防止对临床使用的抗药性寄生虫的传播,并有助于控制和消灭疟疾。在这项工作中,我们评估了一种标准化的人类红细胞无性阶段疟原虫(PfalcHuMouse)的小鼠模型,以选择最佳的药物组合。首先,我们通过对历史数据的回顾性分析表明,P. falciparum 在 PfalcHuMouse 模型中的复制是稳健且高度可重复的。其次,我们比较了从血液中清除寄生虫、亚最佳治疗后寄生虫再生(复发)和治愈作为治疗反应变量的相对价值,以衡量伙伴药物对组合的贡献。为了解决比较问题,我们首先将复发日(DoR)形式化并验证为一个新变量,并发现它与每只老鼠的活寄生虫数量之间存在对数线性关系。然后,利用铁喹酮加阿特酚胺或哌喹加阿特酚胺的单药治疗和两个 PfalcHuMouse 小队列的历史数据,我们发现只有通过血液中药物暴露来测量寄生虫杀伤(即小鼠治愈)作为药物功效的函数,才能通过多变量统计建模和直观的图形显示直接估计药物对疗效的个体贡献。总的来说,PfalcHuMouse 模型中寄生虫杀伤的分析是一种独特而强大的实验工具,可以通过药代动力学-药效学(PK/PD)建模来指导最佳组合的选择。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/43b0/10269072/9ceb440f1ce6/aac.01574-22-f001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验