Suppr超能文献

一种可在体内模拟广泛范围体细胞突变的主编辑鼠。

A prime editor mouse to model a broad spectrum of somatic mutations in vivo.

机构信息

David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.

Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.

出版信息

Nat Biotechnol. 2024 Mar;42(3):424-436. doi: 10.1038/s41587-023-01783-y. Epub 2023 May 11.

Abstract

Genetically engineered mouse models only capture a small fraction of the genetic lesions that drive human cancer. Current CRISPR-Cas9 models can expand this fraction but are limited by their reliance on error-prone DNA repair. Here we develop a system for in vivo prime editing by encoding a Cre-inducible prime editor in the mouse germline. This model allows rapid, precise engineering of a wide range of mutations in cell lines and organoids derived from primary tissues, including a clinically relevant Kras mutation associated with drug resistance and Trp53 hotspot mutations commonly observed in pancreatic cancer. With this system, we demonstrate somatic prime editing in vivo using lipid nanoparticles, and we model lung and pancreatic cancer through viral delivery of prime editing guide RNAs or orthotopic transplantation of prime-edited organoids. We believe that this approach will accelerate functional studies of cancer-associated mutations and complex genetic combinations that are challenging to construct with traditional models.

摘要

基因工程小鼠模型只能捕获一小部分驱动人类癌症的遗传病变。目前的 CRISPR-Cas9 模型可以扩大这个比例,但受到其对易错 DNA 修复的依赖限制。在这里,我们通过在小鼠种系中编码可诱导 Cre 的 Prime 编辑器,开发了一种用于体内 Prime 编辑的系统。该模型允许在源自原发性组织的细胞系和类器官中快速、精确地设计广泛的突变,包括与耐药性相关的临床相关 Kras 突变和在胰腺癌中常见的 Trp53 热点突变。使用该系统,我们通过脂质纳米粒在体内进行了体细胞 Prime 编辑,并通过病毒递送 Prime 编辑向导 RNA 或原位移植 Prime 编辑类器官来模拟肺癌和胰腺癌。我们相信,这种方法将加速对癌症相关突变和传统模型难以构建的复杂遗传组合的功能研究。

相似文献

1
A prime editor mouse to model a broad spectrum of somatic mutations in vivo.
Nat Biotechnol. 2024 Mar;42(3):424-436. doi: 10.1038/s41587-023-01783-y. Epub 2023 May 11.
2
Evolution of Prime Editing Systems: Move Forward to the Treatment of Hereditary Diseases.
Curr Gene Ther. 2024;25(1):46-61. doi: 10.2174/0115665232295117240405070809.
3
Modulating binding affinity of aptamer-based loading constructs enhances extracellular vesicle-mediated CRISPR/Cas9 delivery.
J Control Release. 2025 Aug 10;384:113853. doi: 10.1016/j.jconrel.2025.113853. Epub 2025 May 18.
5
Cell-Penetrating Peptides and CRISPR-Cas9: A Combined Strategy for Human Genetic Disease Therapy.
Hum Gene Ther. 2024 Oct;35(19-20):781-797. doi: 10.1089/hum.2024.020.
8
A Novel CRISPR/Cas9-mediated Mouse Model of Colon Carcinogenesis.
Cell Mol Gastroenterol Hepatol. 2024;18(5):101390. doi: 10.1016/j.jcmgh.2024.101390. Epub 2024 Aug 10.
10

引用本文的文献

1
TIGER: A tdTomato in vivo genome-editing reporter mouse for investigating precision-editor delivery approaches.
Proc Natl Acad Sci U S A. 2025 Sep 2;122(35):e2506257122. doi: 10.1073/pnas.2506257122. Epub 2025 Aug 29.
3
Methods and applications of in vivo CRISPR screening.
Nat Rev Genet. 2025 Jul 29. doi: 10.1038/s41576-025-00873-8.
4
Female Reproductive Tract Organoids: Applications from Physiology to Pathology.
Biomolecules. 2025 Jun 24;15(7):925. doi: 10.3390/biom15070925.
5
Modelling the ageing dependence of cancer evolutionary trajectories.
Nat Rev Cancer. 2025 Jul 10. doi: 10.1038/s41568-025-00838-3.
6
Dual SORT LNPs for multi-organ base editing.
Nat Biotechnol. 2025 Jun 2. doi: 10.1038/s41587-025-02675-z.
7
Modulating the Immunosuppressive Tumor Microenvironment and Inhibiting Growth in Mutp53-Driven CRPC via STAT3 Pathway Blockade.
Int J Biol Sci. 2025 Apr 22;21(7):3081-3098. doi: 10.7150/ijbs.111732. eCollection 2025.
8
Prime Editing in Dividing and Quiescent Cells.
Int J Mol Sci. 2025 Apr 11;26(8):3596. doi: 10.3390/ijms26083596.
9
Targeted approach to determine the impact of cancer-associated protease variants.
Sci Adv. 2025 Feb 14;11(7):eadp5958. doi: 10.1126/sciadv.adp5958. Epub 2025 Feb 12.
10
Genetics and biology of pancreatic ductal adenocarcinoma.
Genes Dev. 2025 Jan 7;39(1-2):36-63. doi: 10.1101/gad.351863.124.

本文引用的文献

1
Oncogenic context shapes the fitness landscape of tumor suppression.
Nat Commun. 2023 Oct 12;14(1):6422. doi: 10.1038/s41467-023-42156-y.
2
Programmable A-to-Y base editing by fusing an adenine base editor with an N-methylpurine DNA glycosylase.
Nat Biotechnol. 2023 Aug;41(8):1080-1084. doi: 10.1038/s41587-022-01595-6. Epub 2023 Jan 9.
3
Improved cytosine base editors generated from TadA variants.
Nat Biotechnol. 2023 May;41(5):686-697. doi: 10.1038/s41587-022-01611-9. Epub 2023 Jan 9.
4
Efficacy of a Small-Molecule Inhibitor of KrasG12D in Immunocompetent Models of Pancreatic Cancer.
Cancer Discov. 2023 Feb 6;13(2):298-311. doi: 10.1158/2159-8290.CD-22-1066.
5
Modeling diverse genetic subtypes of lung adenocarcinoma with a next-generation alveolar type 2 organoid platform.
Genes Dev. 2022 Aug 1;36(15-16):936-949. doi: 10.1101/gad.349659.122. Epub 2022 Sep 29.
6
A split prime editor with untethered reverse transcriptase and circular RNA template.
Nat Biotechnol. 2022 Sep;40(9):1388-1393. doi: 10.1038/s41587-022-01255-9. Epub 2022 Apr 4.
7
In vivo prime editing of a metabolic liver disease in mice.
Sci Transl Med. 2022 Mar 16;14(636):eabl9238. doi: 10.1126/scitranslmed.abl9238.
8
Saturation variant interpretation using CRISPR prime editing.
Nat Biotechnol. 2022 Jun;40(6):885-895. doi: 10.1038/s41587-021-01201-1. Epub 2022 Feb 21.
9
Base editing sensor libraries for high-throughput engineering and functional analysis of cancer-associated single nucleotide variants.
Nat Biotechnol. 2022 Jun;40(6):862-873. doi: 10.1038/s41587-021-01172-3. Epub 2022 Feb 14.
10
Expanding the Reach of Precision Oncology by Drugging All KRAS Mutants.
Cancer Discov. 2022 Apr 1;12(4):924-937. doi: 10.1158/2159-8290.CD-21-1331.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验