David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.
Nat Biotechnol. 2024 Mar;42(3):424-436. doi: 10.1038/s41587-023-01783-y. Epub 2023 May 11.
Genetically engineered mouse models only capture a small fraction of the genetic lesions that drive human cancer. Current CRISPR-Cas9 models can expand this fraction but are limited by their reliance on error-prone DNA repair. Here we develop a system for in vivo prime editing by encoding a Cre-inducible prime editor in the mouse germline. This model allows rapid, precise engineering of a wide range of mutations in cell lines and organoids derived from primary tissues, including a clinically relevant Kras mutation associated with drug resistance and Trp53 hotspot mutations commonly observed in pancreatic cancer. With this system, we demonstrate somatic prime editing in vivo using lipid nanoparticles, and we model lung and pancreatic cancer through viral delivery of prime editing guide RNAs or orthotopic transplantation of prime-edited organoids. We believe that this approach will accelerate functional studies of cancer-associated mutations and complex genetic combinations that are challenging to construct with traditional models.
基因工程小鼠模型只能捕获一小部分驱动人类癌症的遗传病变。目前的 CRISPR-Cas9 模型可以扩大这个比例,但受到其对易错 DNA 修复的依赖限制。在这里,我们通过在小鼠种系中编码可诱导 Cre 的 Prime 编辑器,开发了一种用于体内 Prime 编辑的系统。该模型允许在源自原发性组织的细胞系和类器官中快速、精确地设计广泛的突变,包括与耐药性相关的临床相关 Kras 突变和在胰腺癌中常见的 Trp53 热点突变。使用该系统,我们通过脂质纳米粒在体内进行了体细胞 Prime 编辑,并通过病毒递送 Prime 编辑向导 RNA 或原位移植 Prime 编辑类器官来模拟肺癌和胰腺癌。我们相信,这种方法将加速对癌症相关突变和传统模型难以构建的复杂遗传组合的功能研究。