Suppr超能文献

计算机模拟研究:基于肽模拟富勒烯的衍生物对严重急性呼吸综合征冠状病毒2 M的对接模拟和分子动力学

In-silico study: docking simulation and molecular dynamics of peptidomimetic fullerene-based derivatives against SARS-CoV-2 M.

作者信息

Saleh Noha A

机构信息

P.O. Box 1982, 31441 Dammam, Saudi Arabia Department of Physics, College of Science, Imam Abdulrahman Bin Faisal University.

P.O. Box 1982, 31441 Dammam, Saudi Arabia Basic and Applied Scientific Research Centre, Imam Abdulrahman Bin Faisal University.

出版信息

3 Biotech. 2023 Jun;13(6):185. doi: 10.1007/s13205-023-03608-w. Epub 2023 May 13.

Abstract

COVID-19 is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2, has become a global pandemic resulting in significant morbidity and mortality. This study presents 12 new peptidomimetic fullerene-based derivatives in three groups that are investigated theoretically as SARS-CoV-2 M inhibitors to increase the chance of treating COVID-19. Studied compounds are designed and optimized at B88-LYP/DZVP method. Molecular descriptors results show the stability and reactivity of the compounds with M, especially in the 3rd group (Ser compounds). However, Lipinski's Rule of Five values indicates that the compounds are not suitable as oral drugs. Furthermore, molecular docking simulations are carried out to investigate the binding affinity and interaction modes of the top five compounds (compounds 1, 9, 11, 2, and 10) with the M protein, which have the lowest binding energy. Molecular dynamics simulations are also performed to evaluate the stability of the protein-ligand complexes with compounds 1 and 9 and compare them with natural substrate interaction. The analysis of RMSD, H-bonds, Rg, and SASA indicates that both compounds 1 (Gly-α acid) and 9 (Ser-α acid) have good stability and strong binding affinity with the M protein. However, compound 9 shows slightly better stability and binding affinity compared to compound 1.

摘要

新型冠状病毒肺炎(COVID-19)由严重急性呼吸综合征冠状病毒2(SARS-CoV-2)引起,已成为一场全球大流行疾病,导致了大量发病和死亡。本研究展示了12种新的基于肽模拟富勒烯的衍生物,分为三组,作为SARS-CoV-2 M抑制剂进行了理论研究,以增加治疗COVID-19的机会。所研究的化合物采用B88-LYP/DZVP方法进行设计和优化。分子描述符结果显示了这些化合物与M的稳定性和反应性,特别是在第3组(丝氨酸化合物)中。然而,Lipinski五规则值表明这些化合物不适合作为口服药物。此外,进行了分子对接模拟,以研究排名前五的化合物(化合物1、9、11、2和10)与M蛋白的结合亲和力和相互作用模式,这些化合物具有最低的结合能。还进行了分子动力学模拟,以评估化合物1和9与蛋白质-配体复合物的稳定性,并将它们与天然底物相互作用进行比较。均方根偏差(RMSD)、氢键、回旋半径(Rg)和溶剂可及表面积(SASA)分析表明,化合物1(甘氨酸-α酸)和9(丝氨酸-α酸)与M蛋白都具有良好的稳定性和强结合亲和力。然而,与化合物1相比,化合物9显示出略好的稳定性和结合亲和力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9f63/10183061/e6f23460381f/13205_2023_3608_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验