Suppr超能文献

在细胞微环境中系统性地用 d-氨基酸取代来控制肽和水凝胶的降解。

Systematic d-Amino Acid Substitutions to Control Peptide and Hydrogel Degradation in Cellular Microenvironments.

机构信息

Department of Chemical and Biomolecular Engineering, Colburn Laboratory, University of Delaware, 150 Academy Street, Newark, Delaware 19716, United States.

Department of Materials Science and Engineering, University of Delaware, 201 DuPont Hall, Newark, Delaware 19716, United States.

出版信息

ACS Macro Lett. 2023 Jun 20;12(6):725-732. doi: 10.1021/acsmacrolett.3c00144. Epub 2023 May 17.

Abstract

Enzymatically degradable peptides are commonly used as linkers within hydrogels for biological applications; however, controlling the degradation of these engineered peptides with different contexts and cell types can prove challenging. In this work, we systematically examined the substitution of d-amino acids (D-AAs) for different l-amino acids in a peptide sequence commonly utilized in enzymatically degradable hydrogels (VPMS↓MRGG) to create peptide linkers with a range of different degradation times, in solution and in hydrogels, and investigated the cytocompatibility of these materials. We found that increasing the number of D-AA substitutions increased the resistance to enzymatic degradation both for free peptide and peptide-linked hydrogels; yet, this trend also was accompanied by increased cytotoxicity in cell culture. This work demonstrates the utility of D-AA-modified peptide sequences to create tunable biomaterials platforms tempered by considerations of cytotoxicity, where careful selection and optimization of different peptide designs is needed for specific biological applications.

摘要

酶降解肽通常被用作生物应用水凝胶中的连接物;然而,控制这些工程肽在不同环境和细胞类型下的降解可能具有挑战性。在这项工作中,我们系统地研究了在酶降解水凝胶中常用的肽序列(VPMS↓MRGG)中不同 l-氨基酸被 d-氨基酸(D-AA)取代,以在溶液中和水凝胶中创建具有不同降解时间的肽连接物,并研究了这些材料的细胞相容性。我们发现,增加 D-AA 取代的数量,无论是游离肽还是肽连接的水凝胶,都可以提高对酶降解的抵抗力;然而,这种趋势也伴随着细胞培养中细胞毒性的增加。这项工作证明了 D-AA 修饰的肽序列在创建具有细胞毒性考虑因素的可调生物材料平台方面的实用性,其中需要对不同的肽设计进行仔细选择和优化,以适应特定的生物应用。

相似文献

1
Systematic d-Amino Acid Substitutions to Control Peptide and Hydrogel Degradation in Cellular Microenvironments.
ACS Macro Lett. 2023 Jun 20;12(6):725-732. doi: 10.1021/acsmacrolett.3c00144. Epub 2023 May 17.
2
Direct measurement of matrix metalloproteinase activity in 3D cellular microenvironments using a fluorogenic peptide substrate.
Biomaterials. 2013 Oct;34(30):7344-52. doi: 10.1016/j.biomaterials.2013.06.023. Epub 2013 Jul 2.
3
Enzymatically-degradable alginate hydrogels promote cell spreading and in vivo tissue infiltration.
Biomaterials. 2019 Oct;217:119294. doi: 10.1016/j.biomaterials.2019.119294. Epub 2019 Jun 20.
4
Mechanical stabilization of proteolytically degradable polyethylene glycol dimethacrylate hydrogels through peptide interaction.
Acta Biomater. 2018 Apr 15;71:271-278. doi: 10.1016/j.actbio.2018.03.001. Epub 2018 Mar 9.
5
Designing degradable hydrogels for orthogonal control of cell microenvironments.
Chem Soc Rev. 2013 Sep 7;42(17):7335-72. doi: 10.1039/c3cs60040h. Epub 2013 Apr 22.
6
Quantifying and Controlling the Proteolytic Degradation of Cell Adhesion Peptides.
ACS Biomater Sci Eng. 2024 Aug 12;10(8):4916-4926. doi: 10.1021/acsbiomaterials.4c00736. Epub 2024 Jul 5.
7
Temporally degradable collagen-mimetic hydrogels tuned to chondrogenesis of human mesenchymal stem cells.
Biomaterials. 2016 Aug;99:56-71. doi: 10.1016/j.biomaterials.2016.05.011. Epub 2016 May 10.
8
Delivery of MSCs with a Hybrid β-Sheet Peptide Hydrogel Consisting IGF-1C Domain and D-Form Peptide for Acute Kidney Injury Therapy.
Int J Nanomedicine. 2020 Jun 17;15:4311-4324. doi: 10.2147/IJN.S254635. eCollection 2020.
9
Antimicrobial and degradable triazolinedione (TAD) crosslinked polypeptide hydrogels.
J Mater Chem B. 2021 Jul 14;9(27):5456-5464. doi: 10.1039/d1tb00776a.
10
Molecularly designed alginate hydrogels susceptible to local proteolysis as three-dimensional cellular microenvironments.
Acta Biomater. 2011 Apr;7(4):1674-82. doi: 10.1016/j.actbio.2010.12.029. Epub 2010 Dec 28.

引用本文的文献

2
Advances in Peptidomimetics for Next-Generation Therapeutics: Strategies, Modifications, and Applications.
Chem Rev. 2025 Aug 13;125(15):7099-7166. doi: 10.1021/acs.chemrev.4c00989. Epub 2025 Jul 23.
4
Peptide stereocomplex cross-links for polymer hydrogels.
Chem Sci. 2025 Jun 2. doi: 10.1039/d5sc00251f.
5
Nanoparticle-Based Pulmonary Immune Engineering.
Annu Rev Chem Biomol Eng. 2025 Jun;16(1):249-270. doi: 10.1146/annurev-chembioeng-082223-105117. Epub 2025 Mar 12.
6
Designing Coiled Coils for Heterochiral Complexation to Enhance Binding and Enzymatic Stability.
Biomacromolecules. 2024 Aug 12;25(8):5273-5280. doi: 10.1021/acs.biomac.4c00661. Epub 2024 Jul 9.
7
Forming, Enzyme-Responsive Peptoid-Peptide Hydrogels: An Advanced Long-Acting Injectable Drug Delivery System.
J Am Chem Soc. 2024 Aug 7;146(31):21401-21416. doi: 10.1021/jacs.4c03751. Epub 2024 Jun 26.
8
Mechanism of Peptide Self-assembly and Its Study in Biomedicine.
Protein J. 2024 Jun;43(3):464-476. doi: 10.1007/s10930-024-10200-5. Epub 2024 Apr 27.

本文引用的文献

1
The impact of N-glycosylation on the properties of the antimicrobial peptide LL-III.
Sci Rep. 2023 Mar 6;13(1):3733. doi: 10.1038/s41598-023-29984-0.
2
Fluorescent Peptomer Substrates for Differential Degradation by Metalloproteases.
Biomacromolecules. 2022 Nov 14;23(11):4909-4923. doi: 10.1021/acs.biomac.2c01077. Epub 2022 Oct 21.
5
Rational Design of Hydrogel Networks with Dynamic Mechanical Properties to Mimic Matrix Remodeling.
Adv Healthc Mater. 2022 Apr;11(7):e2101947. doi: 10.1002/adhm.202101947. Epub 2022 Jan 7.
6
Bone Regeneration Using MMP-Cleavable Peptides-Based Hydrogels.
Gels. 2021 Nov 5;7(4):199. doi: 10.3390/gels7040199.
7
Designing Hydrogels for 3D Cell Culture Using Dynamic Covalent Crosslinking.
Adv Healthc Mater. 2021 Jun;10(12):e2100234. doi: 10.1002/adhm.202100234. Epub 2021 May 14.
8
Synergistic effects of D-arginine, D-methionine and D-histidine against biofilms.
Biofouling. 2021 Feb;37(2):222-234. doi: 10.1080/08927014.2021.1893309. Epub 2021 Mar 7.
10
Activating an adaptive immune response from a hydrogel scaffold imparts regenerative wound healing.
Nat Mater. 2021 Apr;20(4):560-569. doi: 10.1038/s41563-020-00844-w. Epub 2020 Nov 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验