Department of Chemical and Biomolecular Engineering, Colburn Laboratory, University of Delaware, 150 Academy Street, Newark, Delaware 19716, United States.
Department of Materials Science and Engineering, University of Delaware, 201 DuPont Hall, Newark, Delaware 19716, United States.
ACS Macro Lett. 2023 Jun 20;12(6):725-732. doi: 10.1021/acsmacrolett.3c00144. Epub 2023 May 17.
Enzymatically degradable peptides are commonly used as linkers within hydrogels for biological applications; however, controlling the degradation of these engineered peptides with different contexts and cell types can prove challenging. In this work, we systematically examined the substitution of d-amino acids (D-AAs) for different l-amino acids in a peptide sequence commonly utilized in enzymatically degradable hydrogels (VPMS↓MRGG) to create peptide linkers with a range of different degradation times, in solution and in hydrogels, and investigated the cytocompatibility of these materials. We found that increasing the number of D-AA substitutions increased the resistance to enzymatic degradation both for free peptide and peptide-linked hydrogels; yet, this trend also was accompanied by increased cytotoxicity in cell culture. This work demonstrates the utility of D-AA-modified peptide sequences to create tunable biomaterials platforms tempered by considerations of cytotoxicity, where careful selection and optimization of different peptide designs is needed for specific biological applications.
酶降解肽通常被用作生物应用水凝胶中的连接物;然而,控制这些工程肽在不同环境和细胞类型下的降解可能具有挑战性。在这项工作中,我们系统地研究了在酶降解水凝胶中常用的肽序列(VPMS↓MRGG)中不同 l-氨基酸被 d-氨基酸(D-AA)取代,以在溶液中和水凝胶中创建具有不同降解时间的肽连接物,并研究了这些材料的细胞相容性。我们发现,增加 D-AA 取代的数量,无论是游离肽还是肽连接的水凝胶,都可以提高对酶降解的抵抗力;然而,这种趋势也伴随着细胞培养中细胞毒性的增加。这项工作证明了 D-AA 修饰的肽序列在创建具有细胞毒性考虑因素的可调生物材料平台方面的实用性,其中需要对不同的肽设计进行仔细选择和优化,以适应特定的生物应用。