Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India.
Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India.
Biochem Pharmacol. 2023 Jul;213:115591. doi: 10.1016/j.bcp.2023.115591. Epub 2023 May 16.
Neuronal necroptosis (programmed necrosis) in the CNS naturally occurs through a caspase-independent way and, especially in neurodegenerative diseases (NDDs) such as Alzheimer's disease (AD), Parknson's disease (PD), Amyotrophic Lateral Sclerosis (ALS) and viral infections. Understanding necroptosis pathways (death receptor-dependent and independent), and its connections with other cell death pathways could lead to new insights into treatment. Receptor-interacting protein kinase (RIPK) mediates necroptosis via mixed-lineage kinase-like (MLKL) proteins. RIPK/MLKL necrosome contains FADD, procaspase-8-cellular FLICE-inhibitory proteins (cFLIPs), RIPK1/RIPK3, and MLKL. The necrotic stimuli cause phosphorylation of MLKL and translocate to the plasma membrane, causing an influx of Ca and Na ions and, the immediate opening of mitochondrial permeability transition pore (mPTP) with the release of inflammatory cell damage-associated molecular patterns (DAMPs) like mitochondrial DNA (mtDNA), high-mobility group box1 (HMGB1), and interleukin1 (IL-1). The MLKL translocates to the nucleus to induce transcription of the NLRP3 inflammasome complex elements. MLKL-induced NLRP3 activity causes caspase-1 cleavage and, IL-1 activation which promotes neuroinflammation. RIPK1-dependent transcription increases illness-associated microglial and lysosomal abnormalities to facilitate amyloid plaque (Aβ) aggregation in AD. Recent research has linked neuroinflammation and mitochondrial fission with necroptosis. MicroRNAs (miRs) such as miR512-3p, miR874, miR499, miR155, and miR128a regulate neuronal necroptosis by targeting key components of necroptotic pathways. Necroptosis inhibitors act by inhibiting the membrane translocation of MLKL and RIPK1 activity. This review insights into the RIPK/MLKL necrosome-NLRP3 inflammasome interactions during death receptor-dependent and independent neuronal necroptosis, and clinical intervention by miRs to protect the brain from NDDs.
中枢神经系统中的神经元坏死性凋亡(程序性坏死)自然通过半胱天冬酶非依赖性途径发生,特别是在神经退行性疾病(NDD)如阿尔茨海默病(AD)、帕金森病(PD)、肌萎缩侧索硬化症(ALS)和病毒感染中。了解坏死性凋亡途径(死亡受体依赖性和非依赖性)及其与其他细胞死亡途径的联系,可以为治疗提供新的见解。受体相互作用蛋白激酶(RIPK)通过混合谱系激酶样(MLKL)蛋白介导坏死性凋亡。RIPK/MLKL 坏死小体包含 FADD、procaspase-8-细胞 FLICE 抑制蛋白(cFLIPs)、RIPK1/RIPK3 和 MLKL。坏死性刺激导致 MLKL 磷酸化并易位到质膜,导致 Ca 和 Na 离子内流,立即打开线粒体通透性转换孔(mPTP),释放炎症细胞损伤相关分子模式(DAMPs),如线粒体 DNA(mtDNA)、高迁移率族框 1(HMGB1)和白细胞介素 1(IL-1)。MLKL 易位到核内诱导 NLRP3 炎性体复合物元素的转录。MLKL 诱导的 NLRP3 活性导致半胱天冬酶 1 的切割和 IL-1 的激活,从而促进神经炎症。RIPK1 依赖性转录增加与疾病相关的小胶质细胞和溶酶体异常,以促进 AD 中的淀粉样斑块(Aβ)聚集。最近的研究将神经炎症和线粒体分裂与坏死性凋亡联系起来。miRs 如 miR512-3p、miR874、miR499、miR155 和 miR128a 通过靶向坏死性凋亡途径的关键成分来调节神经元坏死性凋亡。坏死性凋亡抑制剂通过抑制 MLKL 的膜易位和 RIPK1 活性来发挥作用。本综述深入探讨了死亡受体依赖性和非依赖性神经元坏死性凋亡过程中 RIPK/MLKL 坏死小体-NLRP3 炎性体相互作用,以及 miRs 通过临床干预保护大脑免受 NDD 的作用。