Suppr超能文献

用于分析多尺度功能多样性的广义网络密度矩阵。

Generalized network density matrices for analysis of multiscale functional diversity.

机构信息

Fondazione Bruno Kessler, Via Sommarive 18, 38123 Povo, Italy.

Department of Physics, University of Trento, Via Sommarive 14, 38123 Povo, Trento, Italy.

出版信息

Phys Rev E. 2023 Apr;107(4-1):044304. doi: 10.1103/PhysRevE.107.044304.

Abstract

The network density matrix formalism allows for describing the dynamics of information on top of complex structures and it has been successfully used to analyze, e.g., a system's robustness, perturbations, coarse-graining multilayer networks, characterization of emergent network states, and performing multiscale analysis. However, this framework is usually limited to diffusion dynamics on undirected networks. Here, to overcome some limitations, we propose an approach to derive density matrices based on dynamical systems and information theory, which allows for encapsulating a much wider range of linear and nonlinear dynamics and richer classes of structure, such as directed and signed ones. We use our framework to study the response to local stochastic perturbations of synthetic and empirical networks, including neural systems consisting of excitatory and inhibitory links and gene-regulatory interactions. Our findings demonstrate that topological complexity does not necessarily lead to functional diversity, i.e., the complex and heterogeneous response to stimuli or perturbations. Instead, functional diversity is a genuine emergent property which cannot be deduced from the knowledge of topological features such as heterogeneity, modularity, the presence of asymmetries, and dynamical properties of a system.

摘要

网络密度矩阵形式主义允许在复杂结构之上描述信息的动力学,并且已经成功地用于分析例如系统的鲁棒性、扰动、多层网络的粗粒化、新兴网络状态的特征以及执行多尺度分析。然而,该框架通常仅限于无向网络上的扩散动力学。在这里,为了克服一些限制,我们提出了一种基于动力系统和信息理论的推导密度矩阵的方法,该方法允许封装更广泛的线性和非线性动力学以及更丰富的结构类别,例如有向和有符号的结构。我们使用我们的框架来研究对合成和经验网络的局部随机扰动的响应,包括由兴奋性和抑制性连接和基因调控相互作用组成的神经网络。我们的研究结果表明,拓扑复杂性不一定导致功能多样性,即对刺激或扰动的复杂和异质的响应。相反,功能多样性是一种真正的涌现性质,不能从系统的拓扑特征(如异质性、模块性、存在不对称性和动力学性质)的知识中推断出来。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验