Suppr超能文献

优化噬菌体-抗生素组合对抗金黄色葡萄球菌生物膜。

Optimization of Phage-Antibiotic Combinations against Staphylococcus aureus Biofilms.

机构信息

Anti-Infective Research Laboratory, College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan, USA.

Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, USA.

出版信息

Microbiol Spectr. 2023 Jun 15;11(3):e0491822. doi: 10.1128/spectrum.04918-22. Epub 2023 May 18.

Abstract

Phage therapy has gained attention due to the spread of antibiotic-resistant bacteria and narrow pipeline of novel antibiotics. Phage cocktails are hypothesized to slow the overall development of resistance by challenging the bacteria with more than one phage. Here, we have used a combination of plate-, planktonic-, and biofilm-based screening assays to try to identify phage-antibiotic combinations that will eradicate preformed biofilms of Staphylococcus aureus strains that are otherwise difficult to kill. We have focused on methicillin-resistant S aureus (MRSA) strains and their daptomycin-nonsusceptible vancomycin-intermediate (DNS-VISA) derivatives to understand whether the phage-antibiotic interactions are altered by the changes associated with evolution from MRSA to DNS-VISA (which is known to occur in patients receiving antibiotic therapy). We evaluated the host range and cross-resistance patterns of five obligately lytic S. aureus myophages to select a three-phage cocktail. We screened these phages for their activity against 24-h bead biofilms and found that biofilms of two strains, D712 (DNS-VISA) and 8014 (MRSA), were the most resistant to killing by single phages. Specifically, even initial phage concentrations of 10 PFU per well could not prevent visible regrowth of bacteria from the treated biofilms. However, when we treated biofilms of the same two strains with phage-antibiotic combinations, we prevented bacterial regrowth when using up to 4 orders of magnitude less phage and antibiotic concentrations that were lower than our measured minimum biofilm inhibitory concentration. We did not see a consistent association between phage activity and the evolution of DNS-VISA genotypes in this small number of bacterial strains. The extracellular polymeric matrix of biofilms presents an impediment to antibiotic diffusion, facilitating the emergence of multidrug-resistant populations. While most phage cocktails are designed for the planktonic state of bacteria, it is important to take the biofilm mode of growth (the predominant mode of bacterial growth in nature) into consideration, as it is unclear how interactions between any specific phage and its bacterial hosts will depend on the physical properties of the growth environment. In addition, the extent of bacterial sensitivity to any given phage may vary from the planktonic to the biofilm state. Therefore, phage-containing treatments targeting biofilm infections such as catheters and prosthetic joint material may not be merely based on host range characteristics. Our results open avenues to new questions regarding phage-antibiotic treatment efficiency in the eradication of topologically structured biofilm settings and the extent of eradication efficacy relative to the single agents in biofilm populations.

摘要

噬菌体疗法因其对抗生素耐药菌的传播和新型抗生素研发管道狭窄而备受关注。噬菌体鸡尾酒被假设通过用多种噬菌体挑战细菌,可以减缓整体耐药性的发展。在这里,我们使用了平板、浮游生物和生物膜为基础的筛选测定法来尝试鉴定可以根除金黄色葡萄球菌菌株预形成生物膜的噬菌体-抗生素组合,而这些菌株否则难以杀死。我们专注于耐甲氧西林金黄色葡萄球菌(MRSA)菌株及其达托霉素不敏感万古霉素中间型(DNS-VISA)衍生物,以了解与从 MRSA 到 DNS-VISA 的进化相关的变化是否改变了噬菌体-抗生素的相互作用(已知在接受抗生素治疗的患者中会发生这种情况)。我们评估了五个专性裂解金黄色葡萄球菌噬菌体的宿主范围和交叉耐药模式,以选择三噬菌体鸡尾酒。我们筛选了这些噬菌体对 24 小时珠状生物膜的活性,发现两种菌株 D712(DNS-VISA)和 8014(MRSA)的生物膜对单一噬菌体的杀伤最具抵抗力。具体来说,即使初始噬菌体浓度为每孔 10 PFU,也无法阻止来自处理过的生物膜的细菌可见再生长。然而,当我们用噬菌体-抗生素组合处理相同的两种菌株的生物膜时,我们使用的噬菌体和抗生素浓度低至我们测量的最小生物膜抑制浓度的 4 个数量级以下,从而阻止了细菌的再生长。在这少数细菌菌株中,我们没有看到噬菌体活性与 DNS-VISA 基因型进化之间的一致关联。生物膜的细胞外聚合物基质阻碍了抗生素的扩散,促进了多药耐药种群的出现。虽然大多数噬菌体鸡尾酒都是为细菌的浮游状态设计的,但考虑到生物膜的生长方式(自然界中细菌生长的主要方式)很重要,因为不清楚特定噬菌体与其细菌宿主之间的相互作用将如何取决于生长环境的物理特性。此外,任何特定噬菌体对细菌的敏感性程度可能从浮游状态到生物膜状态有所不同。因此,针对导管和假体关节材料等生物膜感染的含噬菌体的治疗方法可能不仅仅基于宿主范围特征。我们的结果为噬菌体-抗生素治疗在根除拓扑结构生物膜环境中的效率以及相对于生物膜群体中的单一药物的根除功效的程度方面提出了新的问题。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bfbb/10269792/d621d04a24ed/spectrum.04918-22-f001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验