Suppr超能文献

工程共生菌干扰 Nosema 氧化还原系统抑制蜜蜂微孢子虫寄生

Engineered symbiotic bacteria interfering Nosema redox system inhibit microsporidia parasitism in honeybees.

机构信息

College of Food Science and Nutritional Engineering, China Agricultural University, 100083, Beijing, China.

Department of Laboratory Animal Science, Nanchang University, 330006, Nanchang, China.

出版信息

Nat Commun. 2023 May 20;14(1):2778. doi: 10.1038/s41467-023-38498-2.

Abstract

Nosema ceranae is an intracellular parasite invading the midgut of honeybees, which causes serious nosemosis implicated in honeybee colony losses worldwide. The core gut microbiota is involved in protecting against parasitism, and the genetically engineering of the native gut symbionts provides a novel and efficient way to fight pathogens. Here, using laboratory-generated bees mono-associated with gut members, we find that Snodgrassella alvi inhibit microsporidia proliferation, potentially via the stimulation of host oxidant-mediated immune response. Accordingly, N. ceranae employs the thioredoxin and glutathione systems to defend against oxidative stress and maintain a balanced redox equilibrium, which is essential for the infection process. We knock down the gene expression using nanoparticle-mediated RNA interference, which targets the γ-glutamyl-cysteine synthetase and thioredoxin reductase genes of microsporidia. It significantly reduces the spore load, confirming the importance of the antioxidant mechanism for the intracellular invasion of the N. ceranae parasite. Finally, we genetically modify the symbiotic S. alvi to deliver dsRNA corresponding to the genes involved in the redox system of the microsporidia. The engineered S. alvi induces RNA interference and represses parasite gene expression, thereby inhibits the parasitism significantly. Specifically, N. ceranae is most suppressed by the recombinant strain corresponding to the glutathione synthetase or by a mixture of bacteria expressing variable dsRNA. Our findings extend our previous understanding of the protection of gut symbionts against N. ceranae and provide a symbiont-mediated RNAi system for inhibiting microsporidia infection in honeybees.

摘要

蜜蜂微孢子虫是一种寄生在蜜蜂中肠的细胞内寄生虫,它会导致严重的蜜蜂微孢子虫病,从而导致世界各地的蜜蜂种群损失。核心肠道微生物群有助于抵御寄生虫,而对本土肠道共生体进行基因工程为对抗病原体提供了一种新颖而有效的方法。在这里,我们使用实验室生成的单一致密蜂,发现 Snodgrassella alvi 抑制微孢子虫的增殖,可能是通过刺激宿主氧化应激介导的免疫反应。因此,蜜蜂微孢子虫采用硫氧还蛋白和谷胱甘肽系统来抵御氧化应激并维持平衡的氧化还原平衡,这对于感染过程至关重要。我们使用靶向微孢子虫的γ-谷氨酰半胱氨酸合成酶和硫氧还蛋白还原酶基因的纳米颗粒介导的 RNA 干扰来降低基因表达,这显著降低了孢子负荷,证实了抗氧化机制对于 N. ceranae 寄生虫的细胞内入侵的重要性。最后,我们对共生的 S. alvi 进行遗传修饰,以递呈与微孢子虫氧化还原系统相关的基因的 dsRNA。工程化的 S. alvi 诱导 RNA 干扰并抑制寄生虫基因表达,从而显著抑制寄生虫。具体来说,N. ceranae 被对应于谷胱甘肽合成酶的重组菌株或表达可变 dsRNA 的混合细菌抑制得最为严重。我们的研究结果扩展了我们之前对肠道共生体保护蜜蜂免受 N. ceranae 侵害的理解,并提供了一种共生体介导的 RNAi 系统,用于抑制蜜蜂中的微孢子虫感染。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验