Suppr超能文献

基于铁死亡相关基因激活的新型乳腺癌表型的单细胞 RNA 测序分析的应用。

Application of single-cell RNA sequencing analysis of novel breast cancer phenotypes based on the activation of ferroptosis-related genes.

机构信息

Department of Breast Disease, Henan Breast Cancer Center, Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Dongming Road, Zhengzhou, 450008, Henan Province, China.

出版信息

Funct Integr Genomics. 2023 May 22;23(2):173. doi: 10.1007/s10142-023-01086-0.

Abstract

Ferroptosis is distinct from classic apoptotic cell death characterized by the accumulation of reactive oxygen species (ROS) and lipid peroxides on the cell membrane. Increasing findings have demonstrated that ferroptosis plays an important role in cancer development, but the exploration of ferroptosis in breast cancer is limited. In our study, we aimed to establish a ferroptosis activation-related model based on the differentially expressed genes between a group exhibiting high ferroptosis activation and a group exhibiting low ferroptosis activation. By using machine learning to establish the model, we verified the accuracy and efficiency of our model in The Cancer Genome Atlas Breast Invasive Carcinoma (TCGA-BRCA) set and gene expression omnibus (GEO) dataset. Additionally, our research innovatively utilized single-cell RNA sequencing data to systematically reveal the microenvironment in the high and low FeAS groups, which demonstrated differences between the two groups from comprehensive aspects, including the activation condition of transcription factors, cell pseudotime features, cell communication, immune infiltration, chemotherapy efficiency, and potential drug resistance. In conclusion, different ferroptosis activation levels play a vital role in influencing the outcome of breast cancer patients and altering the tumor microenvironment in different molecular aspects. By analyzing differences in ferroptosis activation levels, our risk model is characterized by a good prognostic capacity in assessing the outcome of breast cancer patients, and the risk score can be used to prompt clinical treatment to prevent potential drug resistance. By identifying the different tumor microenvironment landscapes between the high- and low-risk groups, our risk model provides molecular insight into ferroptosis in breast cancer patients.

摘要

铁死亡与经典的细胞凋亡不同,其特征是细胞膜上活性氧 (ROS) 和脂质过氧化物的积累。越来越多的发现表明,铁死亡在癌症发展中起着重要作用,但铁死亡在乳腺癌中的探索有限。在我们的研究中,我们旨在基于一组表现出高铁死亡激活和一组表现出低铁死亡激活的基因表达差异,建立一个铁死亡激活相关模型。通过使用机器学习来建立模型,我们验证了我们的模型在癌症基因组图谱乳腺癌浸润性癌(TCGA-BRCA)集和基因表达综合数据库(GEO)数据集的准确性和效率。此外,我们的研究创新性地利用单细胞 RNA 测序数据系统地揭示了高和低 FeAS 组中的微环境,从转录因子的激活条件、细胞伪时间特征、细胞通讯、免疫浸润、化疗效率和潜在的药物耐药性等综合方面展示了两组之间的差异。总之,不同的铁死亡激活水平在影响乳腺癌患者的结局和改变不同分子方面的肿瘤微环境方面起着至关重要的作用。通过分析铁死亡激活水平的差异,我们的风险模型在评估乳腺癌患者的预后方面具有良好的预后能力,风险评分可用于提示临床治疗以预防潜在的药物耐药性。通过识别高低风险组之间不同的肿瘤微环境景观,我们的风险模型为乳腺癌患者的铁死亡提供了分子见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1fd7/10203036/952c0d8ea616/10142_2023_1086_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验