Suppr超能文献

鉴定关键炎症相关基因作为脓毒症潜在诊断生物标志物。

Identification of Key Inflammation-related Genes as Potential Diagnostic Biomarkers of Sepsis.

出版信息

Altern Ther Health Med. 2023 Jul;29(5):24-31.

Abstract

CONTEXT

Sepsis is one of the leading causes of mortality for patients with severe infections who had been admitted to intensive care units (ICUs). Early diagnosis, accurate treatment, and management of sepsis remain extremely difficult in clinical settings, due to a lack of early biomarkers and diverse clinical manifestations.

OBJECTIVE

The study intended to identify the key genes and pathways associated with inflammation in sepsis-using microarray technology combined with bioinformatics and key inflammation-related genes (IRGs)-to perform an enrichment analysis and evaluate the value of those genes for the diagnosis and evaluation of prognosis for patients with sepsis.

DESIGN

The research team performed a genetic analysis.

SETTING

The study took place at the Center for Emergency and Critical Medicine at Jinshan Hospital of Fudan University in Jinshan District, Shanghai, China.

GROUPS

The research team created two groups, the sepsis group, individuals with sepsis, and the control group, individuals without sepsis, using data for those groups from five microarray datasets obtained from the Gene Expression Omnibus (GEO) database.

OUTCOME MEASURES

The research team: (1) downloaded the GSE57065, GSE28750, GSE9692, GSE13904, and GSE54514 datasets from the Gene Expression Omnibus (GEO) database for analysis; (2) analyzed the GSE57065, GSE28750, and GSE9692 datasets to detect the differentially expressed genes (DEGs) in the sepsis and control groups; (3) used Venn diagrams to obtain the intersection of DEGs and inflammation-related genes (IRGs); (4) mapped the protein-protein interaction (PPI) network using the Search Tool for Retrieval of Interacting Genes (STRING) database; (5) detected the hub genes using Cytoscape and cytoHubba; (6) performed an enrichment analysis of hub IRGs using Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG); (7) validated the expression of hub IRGs in sepsis using the GSE13904 dataset; and (8) performed a survival analysis in sepsis using the GSE54514 dataset to explore the prognostic value of the hub IRGs.

RESULTS

The research team: (1) identified 104 upregulated DEGs and 4 downregulated DEGs; (2) after defining the intersection of DEGs and IRGs, detected nine differentially expressed IRGs (DEIRGs); and (3) identified five IRGs- haptoglobin (HP), high affinity immunoglobulin gamma Fc receptor I (FCGR1A), cluster of differentiation 163 (CD163), complement C3a receptor 1 human (C3AR1), C-type lectin domain containing 5A (CLEC5A)-that overlapped DEIRGs. The GO and KEGG pathway analyses showed that the hub IRGs became enriched during acute-phase response, acute inflammatory response, specific granule, specific granule membrane, endocytic vesicle membrane, tertiary granule, immunoglobulin G (IgG) binding, complement receptor activity, Ig binding, scavenger receptor activity, and scaffold protein binding. The DEGs also played a significant role in Staphylococcus aureus (S. aureus) infection. The ROC curves showed that HP (AUC: 0.956, 95% CI: 0.924-0.988); FCGR1A (AUC: 0.895,95% CI: 0.827-0.963); CD163 (AUC: 0.838, 95% CI: 0.774-0.901); C3AR1 (AUC: 0.953, 95% CI: 0.913-0.993); and CLEC5A (AUC: 0.951, 95% CI: 0 920-0 981) had meaningful diagnostic value for sepsis. Survival analysis showed that the sepsis and control groups had significant differences in HP (P = .043) and CLEC5A (P < .001).

CONCLUSIONS

HP, FCGR1A, CD163, C3AR1, and CLEC5A have value for clinical application. Clinicians can use them as diagnostic biomarkers, and they provide research direction for treatment targets for sepsis.

摘要

背景

脓毒症是重症感染患者入住重症监护病房(ICU)后死亡的主要原因之一。由于缺乏早期生物标志物和临床表现多样,临床环境中脓毒症的早期诊断、准确治疗和管理仍然极其困难。

目的

本研究旨在使用微阵列技术结合生物信息学和关键炎症相关基因(IRGs),鉴定与脓毒症炎症相关的关键基因和途径,进行富集分析,并评估这些基因对脓毒症患者诊断和预后评估的价值。

设计

研究团队进行了基因分析。

地点

本研究在上海市金山区复旦大学附属金山医院的急诊与危重病医学中心进行。

组别

研究团队创建了两组,一组是脓毒症组,即患有脓毒症的个体,另一组是对照组,即没有脓毒症的个体,使用来自基因表达综合数据库(GEO)的五个微阵列数据集的数据。

观察指标

研究团队:(1)从 GEO 数据库下载 GSE57065、GSE28750、GSE9692、GSE13904 和 GSE54514 数据集进行分析;(2)分析 GSE57065、GSE28750 和 GSE9692 数据集,以检测脓毒症和对照组之间的差异表达基因(DEGs);(3)使用 Venn 图获得 DEGs 和炎症相关基因(IRGs)的交集;(4)使用 Search Tool for Retrieval of Interacting Genes(STRING)数据库映射蛋白质-蛋白质相互作用(PPI)网络;(5)使用 Cytoscape 和 cytoHubba 检测枢纽 IRGs;(6)使用基因本体论(GO)和京都基因与基因组百科全书(KEGG)对枢纽 IRGs 进行富集分析;(7)使用 GSE13904 数据集验证脓毒症枢纽 IRGs 的表达;(8)使用 GSE54514 数据集对脓毒症进行生存分析,以探索枢纽 IRGs 的预后价值。

结果

研究团队:(1)确定了 104 个上调的 DEGs 和 4 个下调的 DEGs;(2)在定义 DEGs 和 IRGs 的交集后,检测到 9 个差异表达的 IRGs(DEIRGs);(3)确定了 5 个 IRGs-结合珠蛋白(HP)、高亲和力免疫球蛋白 G Fc 受体 I(FCGR1A)、CD163、补体 C3a 受体 1 人(C3AR1)、C 型凝集素结构域包含 5A(CLEC5A)-与 DEIRGs 重叠。GO 和 KEGG 通路分析表明,枢纽 IRGs 在急性期反应、急性炎症反应、特异性颗粒、特异性颗粒膜、内吞小泡膜、三级颗粒、免疫球蛋白 G(IgG)结合、补体受体活性、Ig 结合、清道夫受体活性和支架蛋白结合中富集。DEGs 也在金黄色葡萄球菌(S. aureus)感染中发挥重要作用。ROC 曲线显示,HP(AUC:0.956,95%CI:0.924-0.988);FCGR1A(AUC:0.895,95%CI:0.827-0.963);CD163(AUC:0.838,95%CI:0.774-0.901);C3AR1(AUC:0.953,95%CI:0.913-0.993);和 CLEC5A(AUC:0.951,95%CI:0 920-0 981)对脓毒症具有有意义的诊断价值。生存分析显示,脓毒症组和对照组在 HP(P =.043)和 CLEC5A(P <.001)方面存在显著差异。

结论

HP、FCGR1A、CD163、C3AR1 和 CLEC5A 具有临床应用价值。临床医生可以将它们用作诊断生物标志物,并为脓毒症的治疗靶点提供研究方向。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验