Suppr超能文献

大肠杆菌中新的含核酸酶的抗噬菌体系统景观以及噬菌体 T4 基因组修饰的反防御作用。

Landscape of New Nuclease-Containing Antiphage Systems in Escherichia coli and the Counterdefense Roles of Bacteriophage T4 Genome Modifications.

机构信息

State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China.

Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, China.

出版信息

J Virol. 2023 Jun 29;97(6):e0059923. doi: 10.1128/jvi.00599-23. Epub 2023 Jun 12.

Abstract

Many phages, such as T4, protect their genomes against the nucleases of bacterial restriction-modification (R-M) and CRISPR-Cas systems through covalent modification of their genomes. Recent studies have revealed many novel nuclease-containing antiphage systems, raising the question of the role of phage genome modifications in countering these systems. Here, by focusing on phage T4 and its host Escherichia coli, we depicted the landscape of the new nuclease-containing systems in E. coli and demonstrated the roles of T4 genome modifications in countering these systems. Our analysis identified at least 17 nuclease-containing defense systems in E. coli, with type III Druantia being the most abundant system, followed by Zorya, Septu, Gabija, AVAST type 4, and qatABCD. Of these, 8 nuclease-containing systems were found to be active against phage T4 infection. During T4 replication in E. coli, 5-hydroxymethyl dCTP is incorporated into the newly synthesized DNA instead of dCTP. The 5-hydroxymethylcytosines (hmCs) are further modified by glycosylation to form glucosyl-5-hydroxymethylcytosine (ghmC). Our data showed that the ghmC modification of the T4 genome abolished the defense activities of Gabija, Shedu, Restriction-like, type III Druantia, and qatABCD systems. The anti-phage T4 activities of the last two systems can also be counteracted by hmC modification. Interestingly, the Restriction-like system specifically restricts phage T4 containing an hmC-modified genome. The ghmC modification cannot abolish the anti-phage T4 activities of Septu, SspBCDE, and mzaABCDE, although it reduces their efficiency. Our study reveals the multidimensional defense strategies of E. coli nuclease-containing systems and the complex roles of T4 genomic modification in countering these defense systems. Cleavage of foreign DNA is a well-known mechanism used by bacteria to protect themselves from phage infections. Two well-known bacterial defense systems, R-M and CRISPR-Cas, both contain nucleases that cleave the phage genomes through specific mechanisms. However, phages have evolved different strategies to modify their genomes to prevent cleavage. Recent studies have revealed many novel nuclease-containing antiphage systems from various bacteria and archaea. However, no studies have systematically investigated the nuclease-containing antiphage systems of a specific bacterial species. In addition, the role of phage genome modifications in countering these systems remains unknown. Here, by focusing on phage T4 and its host Escherichia coli, we depicted the landscape of the new nuclease-containing systems in E. coli using all 2,289 genomes available in NCBI. Our studies reveal the multidimensional defense strategies of E. coli nuclease-containing systems and the complex roles of genomic modification of phage T4 in countering these defense systems.

摘要

许多噬菌体,如 T4,通过对其基因组进行共价修饰来防止细菌限制修饰(R-M)和 CRISPR-Cas 系统的核酸酶的侵害。最近的研究揭示了许多新的含有核酸酶的抗噬菌体系统,这引发了噬菌体基因组修饰在对抗这些系统中的作用的问题。在这里,我们通过关注噬菌体 T4 及其宿主大肠杆菌,描绘了大肠杆菌中新的含有核酸酶的系统景观,并展示了 T4 基因组修饰在对抗这些系统中的作用。我们的分析确定了大肠杆菌中至少有 17 种含有核酸酶的防御系统,其中 III 型 Druantia 是最丰富的系统,其次是 Zorya、Septu、Gabija、AVAST 4 型和 qatABCD。在这些系统中,有 8 种含有核酸酶的系统被发现对噬菌体 T4 的感染具有活性。在大肠杆菌中 T4 复制时,新合成的 DNA 中会掺入 5-羟甲基胞嘧啶而不是胞嘧啶。5-羟甲基胞嘧啶(hmC)进一步通过糖基化修饰形成葡萄糖基-5-羟甲基胞嘧啶(ghmC)。我们的数据表明,T4 基因组的 ghmC 修饰消除了 Gabija、Shedu、Restriction-like、III 型 Druantia 和 qatABCD 系统的防御活性。后两个系统的抗噬菌体 T4 活性也可以被 hmC 修饰所拮抗。有趣的是,Restriction-like 系统特异性地限制含有 ghmC 修饰基因组的噬菌体 T4。ghmC 修饰不能消除 Septu、SspBCDE 和 mzaABCDE 对噬菌体 T4 的抗活性,尽管它降低了它们的效率。我们的研究揭示了大肠杆菌中含有核酸酶的系统的多维防御策略以及 T4 基因组修饰在对抗这些防御系统中的复杂作用。 细菌切割外源 DNA 是一种众所周知的机制,用于保护自身免受噬菌体感染。两种著名的细菌防御系统,R-M 和 CRISPR-Cas,都含有通过特定机制切割噬菌体基因组的核酸酶。然而,噬菌体已经进化出不同的策略来修饰它们的基因组以防止切割。最近的研究从各种细菌和古菌中揭示了许多新的含有核酸酶的抗噬菌体系统。然而,还没有研究系统地研究特定细菌物种的含有核酸酶的抗噬菌体系统。此外,噬菌体基因组修饰在对抗这些系统中的作用仍不清楚。在这里,我们通过关注噬菌体 T4 及其宿主大肠杆菌,使用 NCBI 中可用的 2289 个全基因组,描绘了大肠杆菌中新的含有核酸酶的系统景观。我们的研究揭示了大肠杆菌中含有核酸酶的系统的多维防御策略以及 T4 噬菌体基因组修饰在对抗这些防御系统中的复杂作用。

相似文献

3
Covalent Modification of Bacteriophage T4 DNA Inhibits CRISPR-Cas9.
mBio. 2015 Jun 16;6(3):e00648. doi: 10.1128/mBio.00648-15.
4
Bacteriophage T4 Escapes CRISPR Attack by Minihomology Recombination and Repair.
mBio. 2021 Jun 29;12(3):e0136121. doi: 10.1128/mBio.01361-21. Epub 2021 Jun 22.
5
CRISPR/Cas9-mediated phage resistance is not impeded by the DNA modifications of phage T4.
PLoS One. 2014 Jun 2;9(6):e98811. doi: 10.1371/journal.pone.0098811. eCollection 2014.
7
Engineering T4 Bacteriophage for Display by Type V CRISPR-Cas Genome Editing.
ACS Synth Biol. 2021 Oct 15;10(10):2639-2648. doi: 10.1021/acssynbio.1c00251. Epub 2021 Sep 21.
8
Bacterial defense systems exhibit synergistic anti-phage activity.
Cell Host Microbe. 2024 Apr 10;32(4):557-572.e6. doi: 10.1016/j.chom.2024.01.015. Epub 2024 Feb 22.
9
Engineering of Bacteriophage T4 Genome Using CRISPR-Cas9.
ACS Synth Biol. 2017 Oct 20;6(10):1952-1961. doi: 10.1021/acssynbio.7b00179. Epub 2017 Jul 13.

引用本文的文献

4
Structural Basis for Retron Co-option of Anti-phage ATPase-nuclease.
bioRxiv. 2025 May 13:2025.05.10.653283. doi: 10.1101/2025.05.10.653283.
5
Bacterial Hachiman complex executes DNA cleavage for antiphage defense.
Nat Commun. 2025 Mar 17;16(1):2604. doi: 10.1038/s41467-025-57851-1.
6
A Class 1 OLD family nuclease encoded by is countered by a vibriophage-encoded direct inhibitor.
bioRxiv. 2025 Jan 6:2025.01.06.631583. doi: 10.1101/2025.01.06.631583.
7
Bacterial Shedu immune nucleases share a common enzymatic core regulated by diverse sensor domains.
Mol Cell. 2025 Feb 6;85(3):523-536.e6. doi: 10.1016/j.molcel.2024.12.004. Epub 2024 Dec 31.
8
Temporal epigenome modulation enables efficient bacteriophage engineering and functional analysis of phage DNA modifications.
PLoS Genet. 2024 Sep 4;20(9):e1011384. doi: 10.1371/journal.pgen.1011384. eCollection 2024 Sep.
9
The role of TIR domain-containing proteins in bacterial defense against phages.
Nat Commun. 2024 Aug 27;15(1):7384. doi: 10.1038/s41467-024-51738-3.
10
Distribution of specific prokaryotic immune systems correlates with host optimal growth temperature.
NAR Genom Bioinform. 2024 Aug 20;6(3):lqae105. doi: 10.1093/nargab/lqae105. eCollection 2024 Sep.

本文引用的文献

1
Cryo-EM structures of Escherichia coli Ec86 retron complexes reveal architecture and defence mechanism.
Nat Microbiol. 2022 Sep;7(9):1480-1489. doi: 10.1038/s41564-022-01197-7. Epub 2022 Aug 18.
2
Hypermodified DNA in Viruses of E. coli and Salmonella.
EcoSal Plus. 2021 Dec 15;9(2):eESP00282019. doi: 10.1128/ecosalplus.ESP-0028-2019. Epub 2021 Sep 28.
3
Mechanisms and clinical importance of bacteriophage resistance.
FEMS Microbiol Rev. 2022 Feb 9;46(1). doi: 10.1093/femsre/fuab048.
4
Engineering T4 Bacteriophage for Display by Type V CRISPR-Cas Genome Editing.
ACS Synth Biol. 2021 Oct 15;10(10):2639-2648. doi: 10.1021/acssynbio.1c00251. Epub 2021 Sep 21.
5
Bacteriophage T4 Escapes CRISPR Attack by Minihomology Recombination and Repair.
mBio. 2021 Jun 29;12(3):e0136121. doi: 10.1128/mBio.01361-21. Epub 2021 Jun 22.
6
Coevolution between bacterial CRISPR-Cas systems and their bacteriophages.
Cell Host Microbe. 2021 May 12;29(5):715-725. doi: 10.1016/j.chom.2021.03.018.
7
A nucleotide-sensing endonuclease from the Gabija bacterial defense system.
Nucleic Acids Res. 2021 May 21;49(9):5216-5229. doi: 10.1093/nar/gkab277.
8
Type II Restriction of Bacteriophage DNA With Modified Pyrimidines.
Front Microbiol. 2020 Oct 27;11:604618. doi: 10.3389/fmicb.2020.604618. eCollection 2020.
9
Bacterial Retrons Function In Anti-Phage Defense.
Cell. 2020 Dec 10;183(6):1551-1561.e12. doi: 10.1016/j.cell.2020.09.065. Epub 2020 Nov 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验