Inequalities in Cancer Outcomes Network, London School of Hygiene and Tropical Medicine, London, UK.
Division of Biostatistics, School of Public Health, University of California at Berkeley, Berkeley, CA.
Ann Epidemiol. 2023 Oct;86:34-48.e28. doi: 10.1016/j.annepidem.2023.06.004. Epub 2023 Jun 19.
The targeted maximum likelihood estimation (TMLE) statistical data analysis framework integrates machine learning, statistical theory, and statistical inference to provide a least biased, efficient, and robust strategy for estimation and inference of a variety of statistical and causal parameters. We describe and evaluate the epidemiological applications that have benefited from recent methodological developments.
We conducted a systematic literature review in PubMed for articles that applied any form of TMLE in observational studies. We summarized the epidemiological discipline, geographical location, expertize of the authors, and TMLE methods over time. We used the Roadmap of Targeted Learning and Causal Inference to extract key methodological aspects of the publications. We showcase the contributions to the literature of these TMLE results.
Of the 89 publications included, 33% originated from the University of California at Berkeley, where the framework was first developed by Professor Mark van der Laan. By 2022, 59% of the publications originated from outside the United States and explored up to seven different epidemiological disciplines in 2021-2022. Double-robustness, bias reduction, and model misspecification were the main motivations that drew researchers toward the TMLE framework. Through time, a wide variety of methodological, tutorial, and software-specific articles were cited, owing to the constant growth of methodological developments around TMLE.
There is a clear dissemination trend of the TMLE framework to various epidemiological disciplines and to increasing numbers of geographical areas. The availability of R packages, publication of tutorial papers, and involvement of methodological experts in applied publications have contributed to an exponential increase in the number of studies that understood the benefits and adoption of TMLE.
靶向最大似然估计 (TMLE) 统计数据分析框架将机器学习、统计理论和统计推断相结合,为各种统计和因果参数的估计和推断提供了一种最少偏差、最有效和最稳健的策略。我们描述并评估了受益于最近方法发展的流行病学应用。
我们在 PubMed 中进行了一项系统文献综述,以检索应用任何形式 TMLE 的观察性研究文章。我们总结了流行病学学科、地理位置、作者专业知识以及随着时间的推移 TMLE 方法的变化。我们使用靶向学习和因果推断路线图提取出版物的关键方法学方面。我们展示了这些 TMLE 结果对文献的贡献。
在所纳入的 89 篇出版物中,33% 来自加利福尼亚大学伯克利分校,该框架最初由马克·范德·拉恩教授开发。到 2022 年,59%的出版物来自美国以外的地区,并在 2021-2022 年探索了多达七个不同的流行病学学科。双稳健性、偏差减少和模型误设定是吸引研究人员采用 TMLE 框架的主要动机。随着时间的推移,由于 TMLE 周围的方法学发展不断增长,出现了各种各样的方法学、教程和软件特定文章。
TMLE 框架向各个流行病学学科以及越来越多的地理区域传播的趋势明显。R 包的可用性、教程论文的发表以及方法学专家在应用出版物中的参与,促进了越来越多的研究理解 TMLE 的优势并采用 TMLE。