Suppr超能文献

植物自噬对 SnRK1 信号的正反馈调控。

A positive feedback regulation of SnRK1 signaling by autophagy in plants.

机构信息

Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, Ministry of Education & Guangdong Provincial Key Laboratory of Laser Life Science, School of Life Sciences, South China Normal University, Guangzhou 510631, China; Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China.

Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, Ministry of Education & Guangdong Provincial Key Laboratory of Laser Life Science, School of Life Sciences, South China Normal University, Guangzhou 510631, China.

出版信息

Mol Plant. 2023 Jul 3;16(7):1192-1211. doi: 10.1016/j.molp.2023.07.001. Epub 2023 Jul 5.

Abstract

SnRK1, an evolutionarily conserved heterotrimeric kinase complex that acts as a key metabolic sensor in maintaining energy homeostasis in plants, is an important upstream activator of autophagy that serves as a cellular degradation mechanism for the healthy growth of plants. However, whether and how the autophagy pathway is involved in regulating SnRK1 activity remains unknown. In this study, we identified a clade of plant-specific and mitochondria-localized FCS-like zinc finger (FLZ) proteins as currently unknown ATG8-interacting partners that actively inhibit SnRK1 signaling by repressing the T-loop phosphorylation of the catalytic α subunits of SnRK1, thereby negatively modulating autophagy and plant tolerance to energy deprivation caused by long-term carbon starvation. Interestingly, these AtFLZs are transcriptionally repressed by low-energy stress, and AtFLZ proteins undergo a selective autophagy-dependent pathway to be delivered to the vacuole for degradation, thereby constituting a positive feedback regulation to relieve their repression of SnRK1 signaling. Bioinformatic analyses show that the ATG8-FLZ-SnRK1 regulatory axis first appears in gymnosperms and seems to be highly conserved during the evolution of seed plants. Consistent with this, depletion of ATG8-interacting ZmFLZ14 confers enhanced tolerance, whereas overexpression of ZmFLZ14 leads to reduced tolerance to energy deprivation in maize. Collectively, our study reveals a previously unknown mechanism by which autophagy contributes to the positive feedback regulation of SnRK1 signaling, thereby enabling plants to better adapt to stressful environments.

摘要

SnRK1 是一种进化上保守的异源三聚体激酶复合物,作为植物中维持能量稳态的关键代谢传感器,它是自噬的重要上游激活剂,自噬作为一种细胞降解机制,有助于植物的健康生长。然而,自噬途径是否以及如何参与调节 SnRK1 活性尚不清楚。在本研究中,我们鉴定了一组植物特异性和线粒体定位的 FCS 样锌指(FLZ)蛋白,作为目前未知的 ATG8 相互作用伙伴,通过抑制 SnRK1 催化α亚基的 T 环磷酸化来积极抑制 SnRK1 信号,从而负调控自噬和植物对长期碳饥饿引起的能量剥夺的耐受性。有趣的是,这些 AtFLZs 受到低能量胁迫的转录抑制,并且 AtFLZ 蛋白通过选择性自噬依赖性途径被递送到液泡中进行降解,从而构成对 SnRK1 信号的负调控的正反馈调节。生物信息学分析表明,ATG8-FLZ-SnRK1 调控轴首先出现在裸子植物中,并且在种子植物的进化过程中似乎高度保守。与这一观点一致,耗尽 ATG8 相互作用的 ZmFLZ14 赋予增强的耐受性,而过表达 ZmFLZ14 导致玉米对能量剥夺的耐受性降低。总的来说,我们的研究揭示了自噬有助于 SnRK1 信号的正反馈调节的先前未知的机制,从而使植物能够更好地适应胁迫环境。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验