Suppr超能文献

ChatGPT outperforms crowd workers for text-annotation tasks.

作者信息

Gilardi Fabrizio, Alizadeh Meysam, Kubli Maël

机构信息

Department of Political Science, University of Zurich, Zurich 8050, Switzerland.

出版信息

Proc Natl Acad Sci U S A. 2023 Jul 25;120(30):e2305016120. doi: 10.1073/pnas.2305016120. Epub 2023 Jul 18.

Abstract

Many NLP applications require manual text annotations for a variety of tasks, notably to train classifiers or evaluate the performance of unsupervised models. Depending on the size and degree of complexity, the tasks may be conducted by crowd workers on platforms such as MTurk as well as trained annotators, such as research assistants. Using four samples of tweets and news articles ( = 6,183), we show that ChatGPT outperforms crowd workers for several annotation tasks, including relevance, stance, topics, and frame detection. Across the four datasets, the zero-shot accuracy of ChatGPT exceeds that of crowd workers by about 25 percentage points on average, while ChatGPT's intercoder agreement exceeds that of both crowd workers and trained annotators for all tasks. Moreover, the per-annotation cost of ChatGPT is less than $0.003-about thirty times cheaper than MTurk. These results demonstrate the potential of large language models to drastically increase the efficiency of text classification.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验