Suppr超能文献

美国环保署的前沿计算化学暴露研究。

Cutting-edge computational chemical exposure research at the U.S. Environmental Protection Agency.

机构信息

U.S. Environmental Protection Agency, Office of Research & Development, Center for Computational Toxicology & Exposure (CCTE), 109 TW Alexander Drive, Research Triangle Park, NC 27711, United States.

U.S. Environmental Protection Agency, Office of Research & Development, Center for Computational Toxicology & Exposure (CCTE), 109 TW Alexander Drive, Research Triangle Park, NC 27711, United States.

出版信息

Environ Int. 2023 Aug;178:108097. doi: 10.1016/j.envint.2023.108097. Epub 2023 Jul 13.

Abstract

Exposure science is evolving from its traditional "after the fact" and "one chemical at a time" approach to forecasting chemical exposures rapidly enough to keep pace with the constantly expanding landscape of chemicals and exposures. In this article, we provide an overview of the approaches, accomplishments, and plans for advancing computational exposure science within the U.S. Environmental Protection Agency's Office of Research and Development (EPA/ORD). First, to characterize the universe of chemicals in commerce and the environment, a carefully curated, web-accessible chemical resource has been created. This DSSTox database unambiguously identifies >1.2 million unique substances reflecting potential environmental and human exposures and includes computationally accessible links to each compound's corresponding data resources. Next, EPA is developing, applying, and evaluating predictive exposure models. These models increasingly rely on data, computational tools like quantitative structure activity relationship (QSAR) models, and machine learning/artificial intelligence to provide timely and efficient prediction of chemical exposure (and associated uncertainty) for thousands of chemicals at a time. Integral to this modeling effort, EPA is developing data resources across the exposure continuum that includes application of high-resolution mass spectrometry (HRMS) non-targeted analysis (NTA) methods providing measurement capability at scale with the number of chemicals in commerce. These research efforts are integrated and well-tailored to support population exposure assessment to prioritize chemicals for exposure as a critical input to risk management. In addition, the exposure forecasts will allow a wide variety of stakeholders to explore sustainable initiatives like green chemistry to achieve economic, social, and environmental prosperity and protection of future generations.

摘要

暴露科学正在从传统的“事后”和“一次一种化学物质”方法转变为快速预测化学暴露,以跟上不断扩大的化学物质和暴露范围。在本文中,我们概述了美国环境保护署(EPA)研发办公室(EPA/ORD)内推进计算暴露科学的方法、成就和计划。首先,为了描述商业和环境中化学物质的全貌,创建了一个经过精心策划的、可通过网络访问的化学物质资源。这个 DSSTox 数据库明确地识别了 >120 万种独特的物质,反映了潜在的环境和人类暴露情况,并包含了每个化合物对应数据资源的可计算链接。其次,EPA 正在开发、应用和评估预测性暴露模型。这些模型越来越依赖于数据、定量构效关系(QSAR)模型等计算工具以及机器学习/人工智能,以提供对数千种化学物质的化学暴露(和相关不确定性)的及时、高效预测。作为这一建模工作的组成部分,EPA 正在开发暴露连续体中的数据资源,包括应用高分辨率质谱(HRMS)非靶向分析(NTA)方法,以提供与商业中化学物质数量相匹配的大规模测量能力。这些研究工作是相互集成的,并且很好地适应了支持人群暴露评估的需要,以便优先考虑那些具有暴露风险的化学物质,这是风险管理的关键输入。此外,暴露预测将使各种利益相关者能够探索可持续发展倡议,如绿色化学,以实现经济、社会和环境繁荣,保护子孙后代。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3ce4/10588682/720e887baabb/nihms-1926749-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验