Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA.
Department of Pathology, University of Michigan, Ann Arbor, MI, USA.
Nat Commun. 2023 Jul 27;14(1):4539. doi: 10.1038/s41467-023-40129-9.
Peptide identification in liquid chromatography-tandem mass spectrometry (LC-MS/MS) experiments relies on computational algorithms for matching acquired MS/MS spectra against sequences of candidate peptides using database search tools, such as MSFragger. Here, we present a new tool, MSBooster, for rescoring peptide-to-spectrum matches using additional features incorporating deep learning-based predictions of peptide properties, such as LC retention time, ion mobility, and MS/MS spectra. We demonstrate the utility of MSBooster, in tandem with MSFragger and Percolator, in several different workflows, including nonspecific searches (immunopeptidomics), direct identification of peptides from data independent acquisition data, single-cell proteomics, and data generated on an ion mobility separation-enabled timsTOF MS platform. MSBooster is fast, robust, and fully integrated into the widely used FragPipe computational platform.
在液相色谱-串联质谱(LC-MS/MS)实验中,肽的鉴定依赖于计算算法,这些算法使用数据库搜索工具(如 MSFragger)将获得的 MS/MS 谱与候选肽的序列进行匹配。在这里,我们提出了一种新工具 MSBooster,用于使用基于深度学习的肽性质预测(如 LC 保留时间、离子淌度和 MS/MS 谱)等附加特征重新评分肽与谱的匹配。我们在几个不同的工作流程中展示了 MSBooster 与 MSFragger 和 Percolator 联合使用的效用,包括非特异性搜索(免疫肽组学)、直接从数据独立采集数据中鉴定肽、单细胞蛋白质组学以及在启用离子淌度分离的 timsTOF MS 平台上生成的数据。MSBooster 快速、稳健,并且完全集成到广泛使用的 FragPipe 计算平台中。