Suppr超能文献

基于 ACE2 受体或工程化 Spike 结合肽的 SARS-CoV-2 进入抑制剂比较。

Comparison of SARS-CoV-2 entry inhibitors based on ACE2 receptor or engineered Spike-binding peptides.

机构信息

Department of Molecular Microbiology and Immunology, Keck School of Medicine of the University of Southern California , Los Angeles, California, USA.

The Hastings Foundation and The Wright Foundation Laboratories, Keck School of Medicine of the University of Southern California , Los Angeles, California, USA.

出版信息

J Virol. 2023 Aug 31;97(8):e0068423. doi: 10.1128/jvi.00684-23. Epub 2023 Aug 9.

Abstract

With increasing resistance of SARS-CoV-2 variants to antibodies, there is interest in developing entry inhibitors that target essential receptor-binding regions of the viral Spike protein and thereby present a high bar for viral resistance. Such inhibitors could be derivatives of the viral receptor, ACE2, or peptides engineered to interact specifically with the Spike receptor-binding pocket. We compared the efficacy of a series of both types of entry inhibitors, constructed as fusions to an antibody Fc domain. Such a design can increase protein stability and act to both neutralize free virus and recruit effector functions to clear infected cells. We tested the reagents against prototype variants of SARS-CoV-2, using both Spike pseudotyped vesicular stomatitis virus vectors and replication-competent viruses. These analyses revealed that an optimized ACE2 derivative could neutralize all variants we tested with high efficacy. In contrast, the Spike-binding peptides had varying activities against different variants, with resistance observed in the Spike proteins from Beta, Gamma, and Omicron (BA.1 and BA.5). The resistance mapped to mutations at Spike residues K417 and N501 and could be overcome for one of the peptides by linking two copies in tandem, effectively creating a tetrameric reagent in the Fc fusion. Finally, both the optimized ACE2 and tetrameric peptide inhibitors provided some protection to human ACE2 transgenic mice challenged with the SARS-CoV-2 Delta variant, which typically causes death in this model within 7-9 days. IMPORTANCE The increasing resistance of SARS-CoV-2 variants to therapeutic antibodies has highlighted the need for new treatment options, especially in individuals who do not respond to vaccination. Receptor decoys that block viral entry are an attractive approach because of the presumed high bar to developing viral resistance. Here, we compare two entry inhibitors based on derivatives of the ACE2 receptor, or engineered peptides that bind to the receptor-binding pocket of the SARS-CoV-2 Spike protein. In each case, the inhibitors were fused to immunoglobulin Fc domains, which can further enhance therapeutic properties, and compared for activity against different SARS-CoV-2 variants. Potent inhibition against multiple SARS-CoV-2 variants was demonstrated , and even relatively low single doses of optimized reagents provided some protection in a mouse model, confirming their potential as an alternative to antibody therapies.

摘要

随着 SARS-CoV-2 变体对抗体的耐药性不断增强,人们对开发针对病毒 Spike 蛋白关键受体结合区域的进入抑制剂产生了兴趣,因为这些抑制剂具有很高的抗病毒耐药性。此类抑制剂可以是病毒受体 ACE2 的衍生物,也可以是经过工程设计以特异性结合 Spike 受体结合口袋的肽。我们比较了一系列这两种类型的进入抑制剂的疗效,这些抑制剂被构建为与抗体 Fc 结构域融合。这种设计可以提高蛋白质稳定性,既能中和游离病毒,又能招募效应功能清除感染细胞。我们使用 Spike 假型水疱性口炎病毒载体和复制型病毒来测试这些试剂对 SARS-CoV-2 原型变体的作用。这些分析表明,经过优化的 ACE2 衍生物可以高效中和我们测试的所有变体。相比之下, Spike 结合肽对不同变体的活性不同,在 Beta、Gamma 和 Omicron(BA.1 和 BA.5)的 Spike 蛋白中观察到耐药性。耐药性与 Spike 残基 K417 和 N501 的突变有关,并且通过串联连接两个拷贝,可以使其中一个肽克服耐药性,有效地在 Fc 融合中创建一个四聚体试剂。最后,经过优化的 ACE2 和四聚体肽抑制剂都为接受 SARS-CoV-2 Delta 变体挑战的人 ACE2 转基因小鼠提供了一定的保护,该模型通常在 7-9 天内死亡。重要性 SARS-CoV-2 变体对治疗性抗体的耐药性不断增强,突出了需要新的治疗选择,尤其是在对疫苗无反应的个体中。阻断病毒进入的受体诱饵是一种有吸引力的方法,因为开发病毒耐药性的门槛很高。在这里,我们比较了两种基于 ACE2 受体衍生物或结合 SARS-CoV-2 Spike 蛋白受体结合口袋的工程肽的进入抑制剂。在每种情况下,抑制剂都与免疫球蛋白 Fc 结构域融合,这可以进一步增强治疗特性,并比较它们对不同 SARS-CoV-2 变体的活性。我们证明了对多种 SARS-CoV-2 变体的有效抑制作用,即使是优化试剂的相对低剂量单剂量也在小鼠模型中提供了一些保护,证实了它们作为抗体疗法替代物的潜力。

相似文献

1
Comparison of SARS-CoV-2 entry inhibitors based on ACE2 receptor or engineered Spike-binding peptides.
J Virol. 2023 Aug 31;97(8):e0068423. doi: 10.1128/jvi.00684-23. Epub 2023 Aug 9.
4
SARS-CoV-2 strains bearing Omicron BA.1 spike replicate in C57BL/6 mice.
Front Immunol. 2024 Apr 29;15:1383612. doi: 10.3389/fimmu.2024.1383612. eCollection 2024.
5
SARS-CoV-2 spike protein variant binding affinity to an angiotensin-converting enzyme 2 fusion glycoproteins.
PLoS One. 2022 Dec 6;17(12):e0278294. doi: 10.1371/journal.pone.0278294. eCollection 2022.
6
Optimized Pseudotyping Conditions for the SARS-COV-2 Spike Glycoprotein.
J Virol. 2020 Oct 14;94(21). doi: 10.1128/JVI.01062-20.
8
Engineered ACE2 receptor traps potently neutralize SARS-CoV-2.
Proc Natl Acad Sci U S A. 2020 Nov 10;117(45):28046-28055. doi: 10.1073/pnas.2016093117. Epub 2020 Oct 22.
9
Effects of Spike Mutations in SARS-CoV-2 Variants of Concern on Human or Animal ACE2-Mediated Virus Entry and Neutralization.
Microbiol Spectr. 2022 Jun 29;10(3):e0178921. doi: 10.1128/spectrum.01789-21. Epub 2022 May 31.
10
Evolution of Immune Evasion and Host Range Expansion by the SARS-CoV-2 B.1.1.529 (Omicron) Variant.
mBio. 2023 Apr 25;14(2):e0041623. doi: 10.1128/mbio.00416-23. Epub 2023 Apr 3.

引用本文的文献

1
Reprogramming human B cells with custom heavy-chain antibodies.
Nat Biomed Eng. 2024 Dec;8(12):1700-1714. doi: 10.1038/s41551-024-01240-4. Epub 2024 Jul 22.
2
FeLIX is a restriction factor for mammalian retrovirus infection.
J Virol. 2024 Apr 16;98(4):e0177123. doi: 10.1128/jvi.01771-23. Epub 2024 Mar 5.
4
SCARF Genes in COVID-19 and Kidney Disease: A Path to Comorbidity-Specific Therapies.
Int J Mol Sci. 2023 Nov 8;24(22):16078. doi: 10.3390/ijms242216078.

本文引用的文献

1
Broadly Effective ACE2 Decoy Proteins Protect Mice from Lethal SARS-CoV-2 Infection.
Microbiol Spectr. 2023 Aug 17;11(4):e0110023. doi: 10.1128/spectrum.01100-23. Epub 2023 Jul 3.
2
Novel ACE2 fusion protein with adapting activity against SARS-CoV-2 variants .
Front Immunol. 2023 Mar 8;14:1112505. doi: 10.3389/fimmu.2023.1112505. eCollection 2023.
3
Antiviral and bivalent vaccine efficacy against an omicron XBB.1.5 isolate.
Lancet Infect Dis. 2023 Apr;23(4):402-403. doi: 10.1016/S1473-3099(23)00070-1. Epub 2023 Feb 8.
4
ACE2 binding and antibody evasion in enhanced transmissibility of XBB.1.5.
Lancet Infect Dis. 2023 Mar;23(3):278-280. doi: 10.1016/S1473-3099(23)00010-5. Epub 2023 Feb 3.
5
Prophylaxis and treatment of SARS-CoV-2 infection by an ACE2 receptor decoy in a preclinical animal model.
iScience. 2023 Feb 17;26(2):106092. doi: 10.1016/j.isci.2023.106092. Epub 2023 Jan 31.
7
ACE2-Independent Alternative Receptors for SARS-CoV-2.
Viruses. 2022 Nov 16;14(11):2535. doi: 10.3390/v14112535.
8
Omicron sublineage BQ.1.1 resistance to monoclonal antibodies.
Lancet Infect Dis. 2023 Jan;23(1):22-23. doi: 10.1016/S1473-3099(22)00733-2. Epub 2022 Nov 18.
10
Anti-SARS-CoV-2 immunoadhesin remains effective against Omicron and other emerging variants of concern.
iScience. 2022 Oct 21;25(10):105193. doi: 10.1016/j.isci.2022.105193. Epub 2022 Sep 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验