Department of Molecular Microbiology and Immunology, Keck School of Medicine of the University of Southern California , Los Angeles, California, USA.
The Hastings Foundation and The Wright Foundation Laboratories, Keck School of Medicine of the University of Southern California , Los Angeles, California, USA.
J Virol. 2023 Aug 31;97(8):e0068423. doi: 10.1128/jvi.00684-23. Epub 2023 Aug 9.
With increasing resistance of SARS-CoV-2 variants to antibodies, there is interest in developing entry inhibitors that target essential receptor-binding regions of the viral Spike protein and thereby present a high bar for viral resistance. Such inhibitors could be derivatives of the viral receptor, ACE2, or peptides engineered to interact specifically with the Spike receptor-binding pocket. We compared the efficacy of a series of both types of entry inhibitors, constructed as fusions to an antibody Fc domain. Such a design can increase protein stability and act to both neutralize free virus and recruit effector functions to clear infected cells. We tested the reagents against prototype variants of SARS-CoV-2, using both Spike pseudotyped vesicular stomatitis virus vectors and replication-competent viruses. These analyses revealed that an optimized ACE2 derivative could neutralize all variants we tested with high efficacy. In contrast, the Spike-binding peptides had varying activities against different variants, with resistance observed in the Spike proteins from Beta, Gamma, and Omicron (BA.1 and BA.5). The resistance mapped to mutations at Spike residues K417 and N501 and could be overcome for one of the peptides by linking two copies in tandem, effectively creating a tetrameric reagent in the Fc fusion. Finally, both the optimized ACE2 and tetrameric peptide inhibitors provided some protection to human ACE2 transgenic mice challenged with the SARS-CoV-2 Delta variant, which typically causes death in this model within 7-9 days. IMPORTANCE The increasing resistance of SARS-CoV-2 variants to therapeutic antibodies has highlighted the need for new treatment options, especially in individuals who do not respond to vaccination. Receptor decoys that block viral entry are an attractive approach because of the presumed high bar to developing viral resistance. Here, we compare two entry inhibitors based on derivatives of the ACE2 receptor, or engineered peptides that bind to the receptor-binding pocket of the SARS-CoV-2 Spike protein. In each case, the inhibitors were fused to immunoglobulin Fc domains, which can further enhance therapeutic properties, and compared for activity against different SARS-CoV-2 variants. Potent inhibition against multiple SARS-CoV-2 variants was demonstrated , and even relatively low single doses of optimized reagents provided some protection in a mouse model, confirming their potential as an alternative to antibody therapies.
随着 SARS-CoV-2 变体对抗体的耐药性不断增强,人们对开发针对病毒 Spike 蛋白关键受体结合区域的进入抑制剂产生了兴趣,因为这些抑制剂具有很高的抗病毒耐药性。此类抑制剂可以是病毒受体 ACE2 的衍生物,也可以是经过工程设计以特异性结合 Spike 受体结合口袋的肽。我们比较了一系列这两种类型的进入抑制剂的疗效,这些抑制剂被构建为与抗体 Fc 结构域融合。这种设计可以提高蛋白质稳定性,既能中和游离病毒,又能招募效应功能清除感染细胞。我们使用 Spike 假型水疱性口炎病毒载体和复制型病毒来测试这些试剂对 SARS-CoV-2 原型变体的作用。这些分析表明,经过优化的 ACE2 衍生物可以高效中和我们测试的所有变体。相比之下, Spike 结合肽对不同变体的活性不同,在 Beta、Gamma 和 Omicron(BA.1 和 BA.5)的 Spike 蛋白中观察到耐药性。耐药性与 Spike 残基 K417 和 N501 的突变有关,并且通过串联连接两个拷贝,可以使其中一个肽克服耐药性,有效地在 Fc 融合中创建一个四聚体试剂。最后,经过优化的 ACE2 和四聚体肽抑制剂都为接受 SARS-CoV-2 Delta 变体挑战的人 ACE2 转基因小鼠提供了一定的保护,该模型通常在 7-9 天内死亡。重要性 SARS-CoV-2 变体对治疗性抗体的耐药性不断增强,突出了需要新的治疗选择,尤其是在对疫苗无反应的个体中。阻断病毒进入的受体诱饵是一种有吸引力的方法,因为开发病毒耐药性的门槛很高。在这里,我们比较了两种基于 ACE2 受体衍生物或结合 SARS-CoV-2 Spike 蛋白受体结合口袋的工程肽的进入抑制剂。在每种情况下,抑制剂都与免疫球蛋白 Fc 结构域融合,这可以进一步增强治疗特性,并比较它们对不同 SARS-CoV-2 变体的活性。我们证明了对多种 SARS-CoV-2 变体的有效抑制作用,即使是优化试剂的相对低剂量单剂量也在小鼠模型中提供了一些保护,证实了它们作为抗体疗法替代物的潜力。