Suppr超能文献

单细胞 RNA-Seq 注释、整合和细胞间通讯综述。

A Review of Single-Cell RNA-Seq Annotation, Integration, and Cell-Cell Communication.

机构信息

Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.

Center for Applied Bioinformatics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.

出版信息

Cells. 2023 Jul 30;12(15):1970. doi: 10.3390/cells12151970.

Abstract

Single-cell RNA sequencing (scRNA-seq) has emerged as a powerful tool for investigating cellular biology at an unprecedented resolution, enabling the characterization of cellular heterogeneity, identification of rare but significant cell types, and exploration of cell-cell communications and interactions. Its broad applications span both basic and clinical research domains. In this comprehensive review, we survey the current landscape of scRNA-seq analysis methods and tools, focusing on count modeling, cell-type annotation, data integration, including spatial transcriptomics, and the inference of cell-cell communication. We review the challenges encountered in scRNA-seq analysis, including issues of sparsity or low expression, reliability of cell annotation, and assumptions in data integration, and discuss the potential impact of suboptimal clustering and differential expression analysis tools on downstream analyses, particularly in identifying cell subpopulations. Finally, we discuss recent advancements and future directions for enhancing scRNA-seq analysis. Specifically, we highlight the development of novel tools for annotating single-cell data, integrating and interpreting multimodal datasets covering transcriptomics, epigenomics, and proteomics, and inferring cellular communication networks. By elucidating the latest progress and innovation, we provide a comprehensive overview of the rapidly advancing field of scRNA-seq analysis.

摘要

单细胞 RNA 测序 (scRNA-seq) 的出现,为研究细胞生物学提供了前所未有的分辨率,使其能够描绘细胞异质性、鉴定稀有但重要的细胞类型、探索细胞间通讯和相互作用。其广泛的应用涵盖了基础研究和临床研究领域。在这篇全面的综述中,我们调查了 scRNA-seq 分析方法和工具的现状,重点关注计数模型、细胞类型注释、数据集成,包括空间转录组学,以及细胞间通讯的推断。我们回顾了 scRNA-seq 分析中遇到的挑战,包括稀疏或低表达、细胞注释的可靠性以及数据集成中的假设问题,并讨论了次优聚类和差异表达分析工具对下游分析的潜在影响,特别是在识别细胞亚群方面。最后,我们讨论了增强 scRNA-seq 分析的最新进展和未来方向。具体而言,我们强调了用于注释单细胞数据的新型工具的发展,以及用于整合和解释涵盖转录组学、表观基因组学和蛋白质组学的多模态数据集的方法,并探讨了推断细胞通讯网络的方法。通过阐明最新的进展和创新,我们全面概述了 scRNA-seq 分析这一快速发展的领域。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a024/10417635/65abb40d2f54/cells-12-01970-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验