Suppr超能文献

利用先进技术和统计方法来预测和预防自杀。

The use of advanced technology and statistical methods to predict and prevent suicide.

作者信息

Kleiman Evan M, Glenn Catherine R, Liu Richard T

机构信息

Department of Psychology, Rutgers, The State University of New Jersey, Piscataway, NJ, USA.

Department of Psychology, Old Dominion University, Norfolk, VA, USA.

出版信息

Nat Rev Psychol. 2023 Jun;2(6):347-359. doi: 10.1038/s44159-023-00175-y. Epub 2023 Apr 6.

Abstract

In the past decade, two themes have emerged across suicide research. First, according to meta-analyses, the ability to predict and prevent suicidal thoughts and behaviours is weaker than would be expected for the size of the field. Second, review and commentary papers propose that technological and statistical methods (such as smartphones, wearables, digital phenotyping and machine learning) might become solutions to this problem. In this Review, we aim to strike a balance between the pessimistic picture presented by these meta-analyses and the optimistic picture presented by review and commentary papers about the promise of advanced technological and statistical methods to improve the ability to understand, predict and prevent suicide. We divide our discussion into two broad categories. First, we discuss the research aimed at assessment, with the goal of better understanding or more accurately predicting suicidal thoughts and behaviours. Second, we discuss the literature that focuses on prevention of suicidal thoughts and behaviours. Ecological momentary assessment, wearables and other technological and statistical advances hold great promise for predicting and preventing suicide, but there is much yet to do.

摘要

在过去十年间,自杀研究领域出现了两个主题。其一,根据荟萃分析,预测和预防自杀念头及行为的能力,相较于该领域的规模而言,比预期的要弱。其二,综述和评论文章提出,技术和统计方法(如智能手机、可穿戴设备、数字表型分析和机器学习)可能成为解决这一问题的办法。在本综述中,我们旨在在这些荟萃分析所呈现的悲观图景与综述和评论文章所呈现的乐观图景之间取得平衡,后者认为先进的技术和统计方法有望提高理解、预测和预防自杀的能力。我们将讨论分为两大类。第一,我们讨论旨在评估的研究,目标是更好地理解或更准确地预测自杀念头及行为。第二,我们讨论专注于预防自杀念头及行为的文献。生态瞬时评估、可穿戴设备以及其他技术和统计进展在预测和预防自杀方面极具潜力,但仍有许多工作要做。

相似文献

1
The use of advanced technology and statistical methods to predict and prevent suicide.
Nat Rev Psychol. 2023 Jun;2(6):347-359. doi: 10.1038/s44159-023-00175-y. Epub 2023 Apr 6.
3
Proximal Risk for Suicide: Protocol for an Ecological Momentary Assessment Study.
JMIR Res Protoc. 2022 Jul 12;11(7):e37583. doi: 10.2196/37583.
4
Use of Ecological Momentary Assessment to Study Suicidal Thoughts and Behavior: a Systematic Review.
Curr Psychiatry Rep. 2021 May 18;23(7):41. doi: 10.1007/s11920-021-01255-7.
5
The use of machine learning in the study of suicidal and non-suicidal self-injurious thoughts and behaviors: A systematic review.
J Affect Disord. 2019 Feb 15;245:869-884. doi: 10.1016/j.jad.2018.11.073. Epub 2018 Nov 12.
6
Suicidal thoughts, suicidal behaviours and self-harm in daily life: A systematic review of ecological momentary assessment studies.
Digit Health. 2020 Nov 3;6:2055207620963958. doi: 10.1177/2055207620963958. eCollection 2020 Jan-Dec.
8
Just-in-Time Adaptive Interventions for Suicide Prevention: Promise, Challenges, and Future Directions.
Psychiatry. 2022 Winter;85(4):317-333. doi: 10.1080/00332747.2022.2092828. Epub 2022 Jul 18.
10

引用本文的文献

3
Subgrouping suicidal ideations: an ecological momentary assessment study in psychiatric inpatients.
BMC Psychiatry. 2025 May 8;25(1):469. doi: 10.1186/s12888-025-06861-w.
4
The comprehensive clinical benefits of digital phenotyping: from broad adoption to full impact.
NPJ Digit Med. 2025 Apr 8;8(1):196. doi: 10.1038/s41746-025-01602-5.
5
Exploring Predictors of Passive Versus Active Suicidal Ideation.
Crisis. 2025 May;46(3):142-148. doi: 10.1027/0227-5910/a000999. Epub 2025 Mar 18.
6
Digital Interventions for Adolescents and Young Adults Experiencing Self-Injurious Thoughts and Behaviors.
Curr Treat Options Psychiatry. 2024 Jun;11(2):76-89. doi: 10.1007/s40501-024-00318-9. Epub 2024 Apr 24.
8
The Short-Term Course of Nonsuicidal Self-Injury Among Individuals Seeking Psychiatric Treatment.
JAMA Netw Open. 2024 Oct 1;7(10):e2440510. doi: 10.1001/jamanetworkopen.2024.40510.
10
A suicide attentional bias as implicit cognitive marker of suicide vulnerability in a high-risk sample.
Front Psychiatry. 2024 Aug 7;15:1406675. doi: 10.3389/fpsyt.2024.1406675. eCollection 2024.

本文引用的文献

1
The Temporal Dynamics of Wish to Live, Wish to Die, and Their Short-Term Prospective Relationships With Suicidal Desire.
Behav Ther. 2023 May;54(3):584-594. doi: 10.1016/j.beth.2022.12.011. Epub 2023 Jan 5.
2
Attentional control deficits and suicidal ideation variability: An ecological momentary assessment study in major depression.
J Affect Disord. 2023 Feb 15;323:819-825. doi: 10.1016/j.jad.2022.12.053. Epub 2022 Dec 19.
3
The performance of machine learning models in predicting suicidal ideation, attempts, and deaths: A meta-analysis and systematic review.
J Psychiatr Res. 2022 Nov;155:579-588. doi: 10.1016/j.jpsychires.2022.09.050. Epub 2022 Sep 29.
4
Just-in-Time Adaptive Interventions for Suicide Prevention: Promise, Challenges, and Future Directions.
Psychiatry. 2022 Winter;85(4):317-333. doi: 10.1080/00332747.2022.2092828. Epub 2022 Jul 18.
5
Digital tools for the assessment of pharmacological treatment for depressive disorder: State of the art.
Eur Neuropsychopharmacol. 2022 Jul;60:100-116. doi: 10.1016/j.euroneuro.2022.05.007. Epub 2022 Jun 4.
7
A meta-analysis on the affect regulation function of real-time self-injurious thoughts and behaviours.
Nat Hum Behav. 2022 Jul;6(7):964-974. doi: 10.1038/s41562-022-01340-8. Epub 2022 Apr 28.
9
: A Natural Language Processing-Based Digital Phenotyping Tool for Smart Monitoring of Suicidal Ideation.
Healthcare (Basel). 2022 Apr 8;10(4):698. doi: 10.3390/healthcare10040698.
10
Using natural language processing to improve suicide classification requires consideration of race.
Suicide Life Threat Behav. 2022 Aug;52(4):782-791. doi: 10.1111/sltb.12862. Epub 2022 Apr 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验