Systems Chemistry Department, Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands.
Angew Chem Int Ed Engl. 2023 Oct 9;62(41):e202308971. doi: 10.1002/anie.202308971. Epub 2023 Sep 1.
Zwitterionic polymers are widely employed hydrophilic building blocks for antifouling coatings with numerous applications across a wide range of fields, including but not limited to biomedical science, drug delivery and nanotechnology. Zwitterionic polymers are considered as an attractive alternative to polyethylene glycol because of their biocompatibility and effectiveness to prevent formation of biofilms. To this end, zwitterionic polymers are classified in two categories, namely polybetaines and polyampholytes. Yet, despite a fundamental interest to drive the development of new antifouling materials, the chemical composition of zwitterionic polymer remains severely limited. Here, we show that poly(sulfur ylides) that belong to the largely overlooked class of poly(ylides), effectively prevent the formation of biofilms from pathogenic bacteria. While surface energy analysis reveals strong hydrogen-bond acceptor capabilities of poly(sulfur ylide), membrane damage of pathogenic bacteria induced by poly(sulfur ylides) indicates toxicity towards bacteria while not affecting eucaryotic cells. Such synergistic effect of poly(sulfur ylides) offers distinct advantages over polyethylene glycol when designing new antifouling materials. We expect that our findings will pave the way for the development of a range of ylide-based materials with antifouling properties that have yet to be explored, opening up new directions at the interface of chemistry, biology, and material science.
两性离子聚合物作为亲水性构筑块被广泛应用于抗污涂层,其应用领域广泛,包括但不限于生物医学科学、药物输送和纳米技术。与聚乙二醇相比,两性离子聚合物由于其生物相容性和有效防止生物膜形成的能力,被认为是一种有吸引力的替代品。为此,两性离子聚合物分为两类,即聚甜菜碱和聚两性电解质。然而,尽管人们对推动新型抗污材料的发展有着浓厚的兴趣,但两性离子聚合物的化学组成仍然严重受限。在这里,我们表明属于聚亚胺类中被广泛忽视的聚(亚胺类)的聚(亚磺酰亚胺)有效地阻止了致病菌生物膜的形成。虽然表面能分析显示出聚(亚磺酰亚胺)具有很强的氢键接受能力,但聚(亚磺酰亚胺)对致病菌的膜损伤表明其对细菌具有毒性,而对真核细胞没有影响。与聚乙二醇相比,聚(亚磺酰亚胺)的这种协同作用在设计新型抗污材料时具有明显的优势。我们预计,我们的发现将为开发一系列具有抗污性能的亚胺基材料铺平道路,这些材料的抗污性能尚未得到探索,为化学、生物学和材料科学的界面开辟了新的方向。