Suppr超能文献

癌症中的空间启动子-增强子枢纽:组织、调控和功能。

Spatial promoter-enhancer hubs in cancer: organization, regulation, and function.

机构信息

Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Penn Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Abramson Family Cancer Research Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.

Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Penn Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Abramson Family Cancer Research Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.

出版信息

Trends Cancer. 2023 Dec;9(12):1069-1084. doi: 10.1016/j.trecan.2023.07.017. Epub 2023 Aug 19.

Abstract

Transcriptional dysregulation is a hallmark of cancer and can be driven by altered enhancer landscapes. Recent studies in genome organization have revealed that multiple enhancers and promoters can spatially coalesce to form dynamic topological assemblies, known as promoter-enhancer hubs, which strongly correlate with elevated gene expression. In this review, we discuss the structure and complexity of promoter-enhancer hubs recently identified in multiple cancer types. We further discuss underlying mechanisms driving dysregulation of promoter-enhancer hubs and speculate on their functional role in pathogenesis. Understanding the role of promoter-enhancer hubs in transcriptional dysregulation can provide insight into new therapeutic approaches to target these complex features of genome organization.

摘要

转录失调是癌症的一个标志,可能是由增强子景观的改变所驱动的。最近在基因组组织方面的研究表明,多个增强子和启动子可以在空间上聚集在一起,形成动态的拓扑组装,称为启动子-增强子枢纽,它们与基因表达的升高强烈相关。在这篇综述中,我们讨论了在多种癌症类型中最近发现的启动子-增强子枢纽的结构和复杂性。我们进一步讨论了驱动启动子-增强子枢纽失调的潜在机制,并推测了它们在发病机制中的功能作用。了解启动子-增强子枢纽在转录失调中的作用,可以为针对基因组组织的这些复杂特征的新的治疗方法提供深入了解。

相似文献

1
Spatial promoter-enhancer hubs in cancer: organization, regulation, and function.
Trends Cancer. 2023 Dec;9(12):1069-1084. doi: 10.1016/j.trecan.2023.07.017. Epub 2023 Aug 19.
2
Enhancer-promoter hubs organize transcriptional networks promoting oncogenesis and drug resistance.
Nat Commun. 2024 Sep 14;15(1):8070. doi: 10.1038/s41467-024-52375-6.
3
Enhancer-promoter hubs organize transcriptional networks promoting oncogenesis and drug resistance.
bioRxiv. 2024 Jul 2:2024.07.02.601745. doi: 10.1101/2024.07.02.601745.
4
Oncogenic transcription factors instruct promoter-enhancer hubs in individual triple negative breast cancer cells.
Sci Adv. 2024 Aug 9;10(32):eadl4043. doi: 10.1126/sciadv.adl4043. Epub 2024 Aug 7.
5
Regulatory landscape of enhancer-mediated transcriptional activation.
Trends Cell Biol. 2024 Oct;34(10):826-837. doi: 10.1016/j.tcb.2024.01.008. Epub 2024 Feb 13.
6
A model of active transcription hubs that unifies the roles of active promoters and enhancers.
Nucleic Acids Res. 2021 May 7;49(8):4493-4505. doi: 10.1093/nar/gkab235.
7
3D enhancer-promoter interactions and multi-connected hubs: Organizational principles and functional roles.
Cell Rep. 2023 Apr 25;42(4):112068. doi: 10.1016/j.celrep.2023.112068. Epub 2023 Apr 13.
8
Nuclear compartments, genome folding, and enhancer-promoter communication.
Int Rev Cell Mol Biol. 2015;315:183-244. doi: 10.1016/bs.ircmb.2014.11.004. Epub 2015 Feb 9.
9
Dynamic modulation of enhancer-promoter and promoter-promoter connectivity in gene regulation.
Bioessays. 2024 Sep;46(9):e2400101. doi: 10.1002/bies.202400101. Epub 2024 Jun 25.
10
The Causes and Consequences of Spatial Organization of the Genome in Regulation of Gene Expression.
Front Immunol. 2021 Jun 4;12:682397. doi: 10.3389/fimmu.2021.682397. eCollection 2021.

引用本文的文献

2
Inference of multi-enhancer interactions in T lymphocytes using Hi-Cociety.
bioRxiv. 2025 Jun 17:2025.06.12.659372. doi: 10.1101/2025.06.12.659372.
4
Three-dimensional regulatory hubs support oncogenic programs in glioblastoma.
Mol Cell. 2025 Apr 3;85(7):1330-1348.e6. doi: 10.1016/j.molcel.2025.03.007. Epub 2025 Mar 26.
5
Three-dimensional regulatory hubs support oncogenic programs in glioblastoma.
bioRxiv. 2024 Dec 20:2024.12.20.629544. doi: 10.1101/2024.12.20.629544.
6
Integration of multi-omics data revealed the orphan CpG islands and enhancer-dominated -regulatory network in glioma.
iScience. 2024 Sep 13;27(10):110946. doi: 10.1016/j.isci.2024.110946. eCollection 2024 Oct 18.
8
Enhancer-promoter hubs organize transcriptional networks promoting oncogenesis and drug resistance.
Nat Commun. 2024 Sep 14;15(1):8070. doi: 10.1038/s41467-024-52375-6.
9
Oncogenic transcription factors instruct promoter-enhancer hubs in individual triple negative breast cancer cells.
Sci Adv. 2024 Aug 9;10(32):eadl4043. doi: 10.1126/sciadv.adl4043. Epub 2024 Aug 7.
10
Super-enhancer interactomes from single cells link clustering and transcription.
bioRxiv. 2024 May 10:2024.05.08.593251. doi: 10.1101/2024.05.08.593251.

本文引用的文献

1
Quantitative control of Ets1 dosage by a multi-enhancer hub promotes Th1 cell differentiation and protects from allergic inflammation.
Immunity. 2023 Jul 11;56(7):1451-1467.e12. doi: 10.1016/j.immuni.2023.05.004. Epub 2023 May 31.
2
Functional coordination between transcription factor clustering and gene activity.
Mol Cell. 2023 May 18;83(10):1605-1622.e9. doi: 10.1016/j.molcel.2023.04.018.
3
Loop stacking organizes genome folding from TADs to chromosomes.
Mol Cell. 2023 May 4;83(9):1377-1392.e6. doi: 10.1016/j.molcel.2023.04.008.
4
3D enhancer-promoter interactions and multi-connected hubs: Organizational principles and functional roles.
Cell Rep. 2023 Apr 25;42(4):112068. doi: 10.1016/j.celrep.2023.112068. Epub 2023 Apr 13.
6
Structural elements promote architectural stripe formation and facilitate ultra-long-range gene regulation at a human disease locus.
Mol Cell. 2023 May 4;83(9):1446-1461.e6. doi: 10.1016/j.molcel.2023.03.009. Epub 2023 Mar 29.
7
Structural variants drive context-dependent oncogene activation in cancer.
Nature. 2022 Dec;612(7940):564-572. doi: 10.1038/s41586-022-05504-4. Epub 2022 Dec 7.
8
The 3D enhancer network of the developing T cell genome is shaped by SATB1.
Nat Commun. 2022 Nov 14;13(1):6954. doi: 10.1038/s41467-022-34345-y.
9
Subtype-specific 3D genome alteration in acute myeloid leukaemia.
Nature. 2022 Nov;611(7935):387-398. doi: 10.1038/s41586-022-05365-x. Epub 2022 Oct 26.
10
The spatial organization of transcriptional control.
Nat Rev Genet. 2023 Jan;24(1):53-68. doi: 10.1038/s41576-022-00526-0. Epub 2022 Sep 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验