Suppr超能文献

HepG2核心代谢谱的期望与现实

The Expectation and Reality of the HepG2 Core Metabolic Profile.

作者信息

Kiseleva Olga I, Kurbatov Ilya Y, Arzumanian Viktoriia A, Ilgisonis Ekaterina V, Zakharov Svyatoslav V, Poverennaya Ekaterina V

机构信息

Institute of Biomedical Chemistry, Pogodinskaya Street, 10, 119121 Moscow, Russia.

Chemistry Department, Lomonosov Moscow State University, Leninskie gory Street, 1/3, 119991 Moscow, Russia.

出版信息

Metabolites. 2023 Aug 3;13(8):908. doi: 10.3390/metabo13080908.

Abstract

To represent the composition of small molecules circulating in HepG2 cells and the formation of the "core" of characteristic metabolites that often attract researchers' attention, we conducted a meta-analysis of 56 datasets obtained through metabolomic profiling via mass spectrometry and NMR. We highlighted the 288 most commonly studied compounds of diverse chemical nature and analyzed metabolic processes involving these small molecules. Building a complete map of the metabolome of a cell, which encompasses the diversity of possible impacts on it, is a severe challenge for the scientific community, which is faced not only with natural limitations of experimental technologies, but also with the absence of transparent and widely accepted standards for processing and presenting the obtained metabolomic data. Formulating our research design, we aimed to reveal metabolites crucial to the Hepg2 cell line, regardless of all chemical and/or physical impact factors. Unfortunately, the existing paradigm of data policy leads to a streetlight effect. When analyzing and reporting only target metabolites of interest, the community ignores the changes in the metabolomic landscape that hide many molecular secrets.

摘要

为了呈现循环于HepG2细胞中的小分子组成以及常吸引研究人员关注的特征性代谢物“核心”的形成,我们对通过质谱和核磁共振代谢组学分析获得的56个数据集进行了荟萃分析。我们突出了288种化学性质各异且研究最频繁的化合物,并分析了涉及这些小分子的代谢过程。构建细胞代谢组的完整图谱,涵盖对其可能产生影响的多样性,对科学界来说是一项严峻挑战,这不仅面临实验技术的自然局限,还缺乏处理和呈现所得代谢组学数据的透明且广泛接受的标准。在制定我们的研究设计时,我们旨在揭示对Hepg2细胞系至关重要的代谢物,而不考虑所有化学和/或物理影响因素。不幸的是,现有的数据政策范式导致了路灯效应。当仅分析和报告感兴趣的目标代谢物时,科学界忽略了隐藏许多分子秘密的代谢组格局变化。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f84/10456947/a72f507b4b85/metabolites-13-00908-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验