Zong Dingding, Bai Wenya, Geng Meng, Yin Xia, Wang Fei, Yu Jianyong, Zhang Shichao, Ding Bin
State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
Innovation Center for Textile Science and Technology, Donghua University, Shanghai 200051, China.
ACS Nano. 2023 Sep 12;17(17):17576-17586. doi: 10.1021/acsnano.3c06921. Epub 2023 Aug 29.
Noise pollution, as one of the three major pollutants in the world, has become a great burden on people's health and the global economy. Most present noise absorbers suffer large weight and inevitable compromise between good low-frequency (usually <1000 Hz) and high-frequency (typically >1000 Hz) noise reduction performance. This study presents a scalable strategy to directly synthesize ultrafine fiber sponges with ultrathin graphene-based vibrators by the synchronous occurrence of humidity-assisted electrospinning and electrospraying. The unique physical entanglements between reduced graphene oxide (rGO) nanosheets and ultrafine fibers endow hierarchical vibration structured fiber sponges (VSFSs) with excellent mechanical properties, which could withstand large shear strain (60%) and tensile stress (6000 times its weight) without damage and almost have no plastic deformation after 1000 compressions. Attribute to the vibration effect of ultrathin graphene-based vibrators and the viscous friction effect of porous fiber networks, the VSFSs achieve both good low-frequency (absorption coefficient of 0.98 in 680 Hz) and high-frequency sound absorption (absorption coefficients above 0.8 in 2000-6300 Hz) simultaneously. Furthermore, the noise reduction coefficient (NRC) of lightweight VSFSs (thickness of 30 mm) reaches 0.63, which could reduce high decibel noise by 24.4 dB, providing potential solutions for developing ideal noise-absorbing materials.
噪声污染作为世界三大主要污染物之一,已成为人们健康和全球经济的巨大负担。目前大多数吸声器重量较大,且在良好的低频(通常<1000Hz)和高频(通常>1000Hz)降噪性能之间不可避免地存在折衷。本研究提出了一种可扩展的策略,通过湿度辅助静电纺丝和电喷雾的同步发生,直接合成具有超薄石墨烯基振动器的超细纤维海绵。还原氧化石墨烯(rGO)纳米片与超细纤维之间独特的物理缠结赋予了分级振动结构纤维海绵(VSFSs)优异的机械性能,其能够承受大剪切应变(60%)和拉伸应力(其重量的6000倍)而不损坏,并且在1000次压缩后几乎没有塑性变形。由于超薄石墨烯基振动器的振动效应和多孔纤维网络的粘性摩擦效应,VSFSs同时实现了良好的低频(680Hz时吸收系数为0.98)和高频吸声(2000-6300Hz时吸收系数高于0.8)。此外,轻质VSFSs(厚度为30mm)的降噪系数(NRC)达到0.63,可降低24.4dB的高分贝噪声,为开发理想的吸声材料提供了潜在的解决方案。