Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center; State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, 200438, China.
State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China.
Nat Commun. 2023 Sep 2;14(1):5358. doi: 10.1038/s41467-023-41004-3.
Due to the tolerance of mismatches between gRNA and targeting sequence, base editors frequently induce unwanted Cas9-dependent off-target mutations. Here, to develop models to predict such off-targets, we design gRNA-off- target pairs for adenine base editors (ABEs) and cytosine base editors (CBEs) and stably integrate them into the human cells. After five days of editing, we obtain valid efficiency datasets of 54,663 and 55,727 off-targets for ABEs and CBEs, respectively. We use the datasets to train deep learning models, resulting in ABEdeepoff and CBEdeepoff, which can predict off-target sites. We use these tools to predict off-targets for a panel of endogenous loci and achieve Spearman correlation values varying from 0.710 to 0.859. Finally, we develop an integrated tool that is freely accessible via an online web server http://www.deephf.com/#/bedeep/bedeepoff . These tools could facilitate minimizing the off-target effects of base editing.
由于 gRNA 与靶向序列之间的不匹配容忍度较高,碱基编辑器经常会诱导不必要的 Cas9 依赖性脱靶突变。在这里,为了开发预测这些脱靶的模型,我们设计了腺嘌呤碱基编辑器 (ABE) 和胞嘧啶碱基编辑器 (CBE) 的 gRNA 脱靶对,并将其稳定整合到人类细胞中。编辑五天后,我们分别获得了 54663 和 55727 个 ABE 和 CBE 脱靶的有效效率数据集。我们使用这些数据集来训练深度学习模型,得到 ABEdeepoff 和 CBEdeepoff,它们可以预测脱靶位点。我们使用这些工具来预测一组内源性基因座的脱靶,实现了从 0.710 到 0.859 的 Spearman 相关系数值。最后,我们开发了一个集成工具,可以通过在线网络服务器 http://www.deephf.com/#/bedeep/bedeepoff 免费访问。这些工具可以帮助最小化碱基编辑的脱靶效应。