Suppr超能文献

针对癌症免疫疗法的固有免疫途径。

Targeting innate immune pathways for cancer immunotherapy.

机构信息

Harvard Medical School and Division of Gastroenterology, Boston Children's Hospital, Boston, MA, USA.

Harvard Medical School and Division of Gastroenterology, Boston Children's Hospital, Boston, MA, USA.

出版信息

Immunity. 2023 Oct 10;56(10):2206-2217. doi: 10.1016/j.immuni.2023.07.018. Epub 2023 Sep 12.

Abstract

The innate immune system is critical for inducing durable and protective T cell responses to infection and has been increasingly recognized as a target for cancer immunotherapy. In this review, we present a framework wherein distinct innate immune signaling pathways activate five key dendritic cell activities that are important for T cell-mediated immunity. We discuss molecular pathways that can agonize these activities and highlight that no single pathway can agonize all activities needed for durable immunity. The immunological distinctions between innate immunotherapy administration to the tumor microenvironment versus administration via vaccination are examined, with particular focus on the strategies that enhance dendritic cell migration, interferon expression, and interleukin-1 family cytokine production. In this context, we argue for the importance of appreciating necessity vs. sufficiency when considering the impact of innate immune signaling in inflammation and protective immunity and offer a conceptual guideline for the development of efficacious cancer immunotherapies.

摘要

先天免疫系统对于诱导针对感染的持久和保护性 T 细胞反应至关重要,并且越来越被认为是癌症免疫治疗的一个靶点。在这篇综述中,我们提出了一个框架,其中不同的先天免疫信号通路激活了五个关键的树突状细胞活性,这些活性对于 T 细胞介导的免疫很重要。我们讨论了可以激动这些活性的分子途径,并强调没有单一途径可以激动持久免疫所需的所有活性。我们还检查了先天免疫疗法在肿瘤微环境中给药与通过疫苗接种给药之间的免疫学区别,特别关注增强树突状细胞迁移、干扰素表达和白细胞介素 1 家族细胞因子产生的策略。在这种情况下,我们认为在考虑先天免疫信号在炎症和保护性免疫中的作用时,需要认识到必要性和充分性非常重要,并为开发有效的癌症免疫疗法提供了一个概念性指南。

相似文献

1
Targeting innate immune pathways for cancer immunotherapy.
Immunity. 2023 Oct 10;56(10):2206-2217. doi: 10.1016/j.immuni.2023.07.018. Epub 2023 Sep 12.
2
Mechanisms and pathways of innate immune activation and regulation in health and cancer.
Hum Vaccin Immunother. 2014;10(11):3270-85. doi: 10.4161/21645515.2014.979640.
3
Targeting Cytosolic Nucleic Acid-Sensing Pathways for Cancer Immunotherapies.
Front Immunol. 2018 Apr 9;9:711. doi: 10.3389/fimmu.2018.00711. eCollection 2018.
4
Emerging mechanisms and implications of cGAS-STING signaling in cancer immunotherapy strategies.
Cancer Biol Med. 2024 Jan 3;21(1):45-64. doi: 10.20892/j.issn.2095-3941.2023.0440.
5
Targeting STING for cancer immunotherapy: From mechanisms to translation.
Int Immunopharmacol. 2022 Dec;113(Pt A):109304. doi: 10.1016/j.intimp.2022.109304. Epub 2022 Oct 14.
7
cGAS-STING signaling in the tumor microenvironment.
Cancer Lett. 2023 Nov 28;577:216409. doi: 10.1016/j.canlet.2023.216409. Epub 2023 Sep 23.
8
Fine tuning of the innate and adaptive immune responses by Interleukin-2.
J Immunotoxicol. 2024 Mar 16;21(1):2332175. doi: 10.1080/1547691X.2024.2332175. Epub 2024 Mar 25.
9
Targeting Innate Immunity in Cancer Therapy.
Vaccines (Basel). 2021 Feb 9;9(2):138. doi: 10.3390/vaccines9020138.
10
Enhancing immunotherapy outcomes by targeted remodeling of the tumor microenvironment via combined cGAS-STING pathway strategies.
Front Immunol. 2024 May 16;15:1399926. doi: 10.3389/fimmu.2024.1399926. eCollection 2024.

引用本文的文献

2
The comparison of the prognostic value of different inflammation-related indicators in patients with oral squamous cell carcinoma.
Front Genet. 2025 Aug 18;16:1652603. doi: 10.3389/fgene.2025.1652603. eCollection 2025.
3
Targeted therapies induced depigmentation: a review.
Front Immunol. 2025 Aug 8;16:1625738. doi: 10.3389/fimmu.2025.1625738. eCollection 2025.
4
The Role of Senescence, its Therapeutic Relevance and Clinical Implications in the Tumor Microenvironment.
Theranostics. 2025 Jul 28;15(16):8675-8703. doi: 10.7150/thno.112633. eCollection 2025.
5
Oxidized phospholipid damage signals as modulators of immunity.
Open Biol. 2025 Jul;15(7):240391. doi: 10.1098/rsob.240391. Epub 2025 Jul 30.
6
Pattern recognition receptors: function, regulation and therapeutic potential.
Signal Transduct Target Ther. 2025 Jul 11;10(1):216. doi: 10.1038/s41392-025-02264-1.
7
Eliciting antitumor immunity via therapeutic cancer vaccines.
Cell Mol Immunol. 2025 Jul 9. doi: 10.1038/s41423-025-01316-4.
8
RXRG as a Novel Biomarker and its Correlation With Immune Infiltration in Thyroid Carcinoma.
In Vivo. 2025 Jul-Aug;39(4):2013-2034. doi: 10.21873/invivo.13998.
9
Targeting tumor metabolism to augment CD8 T cell anti-tumor immunity.
J Pharm Anal. 2025 May;15(5):101150. doi: 10.1016/j.jpha.2024.101150. Epub 2024 Nov 20.

本文引用的文献

1
Dendritic cells as shepherds of T cell immunity in cancer.
Immunity. 2023 Oct 10;56(10):2218-2230. doi: 10.1016/j.immuni.2023.08.014. Epub 2023 Sep 13.
2
Tumor PD-L1 engages myeloid PD-1 to suppress type I interferon to impair cytotoxic T lymphocyte recruitment.
Cancer Cell. 2023 Mar 13;41(3):620-636.e9. doi: 10.1016/j.ccell.2023.02.005.
5
Immunotherapeutic Implications of Toll-like Receptors Activation in Tumor Microenvironment.
Pharmaceutics. 2022 Oct 25;14(11):2285. doi: 10.3390/pharmaceutics14112285.
6
Repositioning canakinumab for non-small cell lung cancer-important lessons for drug repurposing in oncology.
Br J Cancer. 2022 Sep;127(5):785-787. doi: 10.1038/s41416-022-01893-5. Epub 2022 Jun 23.
7
Type I interferon-mediated tumor immunity and its role in immunotherapy.
Cell Mol Life Sci. 2022 Mar 16;79(3):191. doi: 10.1007/s00018-022-04219-z.
8
Mechanisms of innate and adaptive immunity to the Pfizer-BioNTech BNT162b2 vaccine.
Nat Immunol. 2022 Apr;23(4):543-555. doi: 10.1038/s41590-022-01163-9. Epub 2022 Mar 14.
9
TCR-sequencing in cancer and autoimmunity: barcodes and beyond.
Trends Immunol. 2022 Mar;43(3):180-194. doi: 10.1016/j.it.2022.01.002. Epub 2022 Jan 25.
10
Dying cells fan the flames of inflammation.
Science. 2021 Nov 26;374(6571):1076-1080. doi: 10.1126/science.abi5934. Epub 2021 Nov 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验