Suppr超能文献

扬帆起航:操纵 SHP2 活性及其在癌症中的作用。

Setting sail: Maneuvering SHP2 activity and its effects in cancer.

机构信息

Department of Cell and Molecular Pharmacology & Experimental Therapeutics, College of Medicine, Medical University of South Carolina, Charleston, SC, United States.

Department of Pediatrics, Darby Children's Research Institute, Medical University of South Carolina, Charleston, SC, United States.

出版信息

Adv Cancer Res. 2023;160:17-60. doi: 10.1016/bs.acr.2023.03.003. Epub 2023 Apr 17.

Abstract

Since the discovery of tyrosine phosphorylation being a critical modulator of cancer signaling, proteins regulating phosphotyrosine levels in cells have fast become targets of therapeutic intervention. The nonreceptor protein tyrosine phosphatase (PTP) coded by the PTPN11 gene "SHP2" integrates phosphotyrosine signaling from growth factor receptors into the RAS/RAF/ERK pathway and is centrally positioned in processes regulating cell development and oncogenic transformation. Dysregulation of SHP2 expression or activity is linked to tumorigenesis and developmental defects. Even as a compelling anti-cancer target, SHP2 was considered "undruggable" for a long time owing to its conserved catalytic PTP domain that evaded drug development. Recently, SHP2 has risen from the "undruggable curse" with the discovery of small molecules that manipulate its intrinsic allostery for effective inhibition. SHP2's unique domain arrangement and conformation(s) allow for a truly novel paradigm of inhibitor development relying on skillful targeting of noncatalytic sites on proteins. In this review we summarize the biological functions, signaling properties, structural attributes, allostery and inhibitors of SHP2.

摘要

自从发现酪氨酸磷酸化是癌症信号的关键调节剂以来,调节细胞中磷酸酪氨酸水平的蛋白质迅速成为治疗干预的靶点。由 PTPN11 基因编码的非受体蛋白酪氨酸磷酸酶(PTP)“SHP2”将生长因子受体的磷酸酪氨酸信号整合到 RAS/RAF/ERK 途径中,并在调节细胞发育和致癌转化的过程中处于中心位置。SHP2 表达或活性的失调与肿瘤发生和发育缺陷有关。即使作为一个有吸引力的抗癌靶点,SHP2 也因其保守的催化 PTP 结构域而长期被认为是“不可成药的”,因为该结构域逃避了药物开发。最近,随着小分子的发现,能够操纵其内在变构以实现有效抑制,SHP2 已经摆脱了“不可成药的诅咒”。SHP2 独特的结构排列和构象允许基于对蛋白质非催化位点的巧妙靶向,开发出真正新颖的抑制剂范例。在这篇综述中,我们总结了 SHP2 的生物学功能、信号特性、结构属性、变构和抑制剂。

相似文献

1
Setting sail: Maneuvering SHP2 activity and its effects in cancer.
Adv Cancer Res. 2023;160:17-60. doi: 10.1016/bs.acr.2023.03.003. Epub 2023 Apr 17.
2
Discovery of novel furanylbenzamide inhibitors that target oncogenic tyrosine phosphatase SHP2 in leukemia cells.
J Biol Chem. 2022 Jan;298(1):101477. doi: 10.1016/j.jbc.2021.101477. Epub 2021 Dec 10.
3
The Allosteric Site on SHP2's Protein Tyrosine Phosphatase Domain is Targetable with Druglike Small Molecules.
ACS Omega. 2018 Nov 30;3(11):15763-15770. doi: 10.1021/acsomega.8b02200. Epub 2018 Nov 20.
4
A cellular target engagement assay for the characterization of SHP2 (PTPN11) phosphatase inhibitors.
J Biol Chem. 2020 Feb 28;295(9):2601-2613. doi: 10.1074/jbc.RA119.010838. Epub 2020 Jan 17.
5
Allosteric modulation of SHP2: Quest from known to unknown.
Drug Dev Res. 2023 Nov;84(7):1395-1410. doi: 10.1002/ddr.22100. Epub 2023 Aug 15.
6
Targeting a cryptic allosteric site for selective inhibition of the oncogenic protein tyrosine phosphatase Shp2.
Biochemistry. 2015 Jan 20;54(2):497-504. doi: 10.1021/bi5013595. Epub 2015 Jan 2.
7
Inhibition of SHP2 as an approach to block RAS-driven cancers.
Adv Cancer Res. 2022;153:205-236. doi: 10.1016/bs.acr.2021.07.002. Epub 2021 Aug 3.
8
A comprehensive review of SHP2 and its role in cancer.
Cell Oncol (Dordr). 2022 Oct;45(5):729-753. doi: 10.1007/s13402-022-00698-1. Epub 2022 Sep 6.
9
Inhibition of SHP2 and SHP1 Protein Tyrosine Phosphatase Activity by Chemically Induced Dimerization.
ACS Omega. 2022 Apr 11;7(16):14180-14188. doi: 10.1021/acsomega.2c00780. eCollection 2022 Apr 26.

引用本文的文献

2
Protein Tyrosine Phosphatase regulation by Reactive Oxygen Species.
Adv Cancer Res. 2024;162:45-74. doi: 10.1016/bs.acr.2024.05.002. Epub 2024 May 24.
3
The value of protein allostery in rational anticancer drug design: an update.
Expert Opin Drug Discov. 2024 Sep;19(9):1071-1085. doi: 10.1080/17460441.2024.2384467. Epub 2024 Jul 28.

本文引用的文献

1
Insights into the importance of WPD-loop sequence for activity and structure in protein tyrosine phosphatases.
Chem Sci. 2022 Oct 26;13(45):13524-13540. doi: 10.1039/d2sc04135a. eCollection 2022 Nov 23.
3
Properties of FDA-approved small molecule protein kinase inhibitors: A 2023 update.
Pharmacol Res. 2023 Jan;187:106552. doi: 10.1016/j.phrs.2022.106552. Epub 2022 Nov 17.
4
Applications of covalent chemistry in targeted protein degradation.
Chem Soc Rev. 2022 Nov 14;51(22):9243-9261. doi: 10.1039/d2cs00362g.
5
Recent Advances in PROTAC Technology Toward New Therapeutic Modalities.
Chem Biodivers. 2022 Nov;19(11):e202200828. doi: 10.1002/cbdv.202200828. Epub 2022 Oct 5.
6
Accelerating PROTAC drug discovery: Establishing a relationship between ubiquitination and target protein degradation.
Biochem Biophys Res Commun. 2022 Nov 5;628:68-75. doi: 10.1016/j.bbrc.2022.08.048. Epub 2022 Aug 27.
7
A comprehensive review of SHP2 and its role in cancer.
Cell Oncol (Dordr). 2022 Oct;45(5):729-753. doi: 10.1007/s13402-022-00698-1. Epub 2022 Sep 6.
8
Correction to "Loop Dynamics and Enzyme Catalysis in Protein Tyrosine Phosphatases".
J Am Chem Soc. 2022 Jun 8;144(22):10091-10093. doi: 10.1021/jacs.2c04624. Epub 2022 May 24.
9
Phosphorylation of SHP2 at Tyr62 Enables Acquired Resistance to SHP2 Allosteric Inhibitors in FLT3-ITD-Driven AML.
Cancer Res. 2022 Jun 6;82(11):2141-2155. doi: 10.1158/0008-5472.CAN-21-0548.
10
SHP2 allosteric inhibitor TK-453 alleviates psoriasis-like skin inflammation in mice via inhibition of IL-23/Th17 axis.
iScience. 2022 Mar 1;25(4):104009. doi: 10.1016/j.isci.2022.104009. eCollection 2022 Apr 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验