Suppr超能文献

预测肝细胞癌远处转移风险模型的开发与验证:一项真实世界回顾性研究

Development and validation of a model to predict the risk of distant metastases from hepatocellular carcinoma: a real-world retrospective study.

作者信息

Shao Guangzhao, Fan Zhongqi, Qiu Wei, Lv Guoyue

机构信息

General Surgery Center, First Hospital of Jilin University, Changchun, China.

出版信息

J Cancer Res Clin Oncol. 2023 Dec;149(18):16489-16499. doi: 10.1007/s00432-023-05361-2. Epub 2023 Sep 15.

Abstract

PURPOSE

This study aimed to construct a novel clinical prediction model to predict the risk of distant metastases (DM) in hepatocellular carcinoma (HCC).

METHODS

We included 3869 HCC patients, comprising 3076 patients from the Surveillance, Epidemiology, and End Results (SEER) database and 793 patients from a hospital in China. Variables with a P-value < 0.05 in the univariate logistic analysis were entered into the multivariate analysis to determine the independent predictive factors for DM in HCC. A nomogram was created based on the independent predictive factors. The predictive performance of the model was assessed using the receiver operating characteristics (ROCs) curve, decision curve analysis (DCA), calibration curves, and clinical impact curve analysis (CIC). Additionally, we developed a user-friendly web-based calculator based on the model.

RESULTS

The multivariate logistic regression analysis revealed that tumor size (P < 0.001), type of treatment (P < 0.001), T stage (P = 0.001), N stage (P < 0.001), and grade (P = 0.043) were identified as independent predictive factors. A nomogram was constructed based on these factors. The area under the ROC curves (AUC) value was 0.845 (95% CI 0.815-0.874) for the training set, 0.818 (95% CI 0.774-0.863) for the internal validation set, and 0.823 (95% CI 0.770-0.876) for the external validation set. Moreover, DCA analysis, calibration curves, and CIC analysis demonstrated the favorable predictive performance of the nomogram. Finally, a more user-friendly web-based calculator was developed.

CONCLUSION

We developed a nomogram and showed its favorable predictive performance in predicting DM in HCC. Furthermore, we developed a more user-friendly web-based calculator, which has the potential to aid clinicians in individualized diagnosis and make better clinical decisions for HCC patients.

摘要

目的

本研究旨在构建一种新型临床预测模型,以预测肝细胞癌(HCC)远处转移(DM)的风险。

方法

我们纳入了3869例HCC患者,其中3076例来自监测、流行病学和最终结果(SEER)数据库,793例来自中国一家医院。单因素逻辑回归分析中P值<0.05的变量被纳入多因素分析,以确定HCC中DM的独立预测因素。基于独立预测因素创建了列线图。使用受试者工作特征(ROC)曲线、决策曲线分析(DCA)、校准曲线和临床影响曲线分析(CIC)评估模型的预测性能。此外,我们基于该模型开发了一个用户友好的基于网络的计算器。

结果

多因素逻辑回归分析显示,肿瘤大小(P<0.001)、治疗类型(P<0.001)、T分期(P=0.001)、N分期(P<0.001)和分级(P=0.043)被确定为独立预测因素。基于这些因素构建了列线图。训练集的ROC曲线下面积(AUC)值为0.845(95%CI 0.815 - 0.874),内部验证集为0.818(95%CI 0.774 - 0.863),外部验证集为0.823(95%CI 0.770 - 0.876)。此外,DCA分析、校准曲线和CIC分析表明列线图具有良好的预测性能。最后,开发了一个更用户友好的基于网络的计算器。

结论

我们开发了一种列线图,并显示其在预测HCC的DM方面具有良好的预测性能。此外,我们开发了一个更用户友好的基于网络的计算器,它有可能帮助临床医生进行个体化诊断,并为HCC患者做出更好的临床决策。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验