Suppr超能文献

利用国际疾病分类(ICD)代码识别阿片类药物使用障碍患者:挑战与机遇。

Identifying patients with opioid use disorder using International Classification of Diseases (ICD) codes: Challenges and opportunities.

机构信息

Department of Family Medicine, University of Washington, Seattle, Washington, USA.

Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, California, USA.

出版信息

Addiction. 2024 Jan;119(1):160-168. doi: 10.1111/add.16338. Epub 2023 Sep 15.

Abstract

BACKGROUND AND AIMS

International Classification of Diseases (ICD) diagnosis codes are often used in research to identify patients with opioid use disorder (OUD), but their accuracy for this purpose is not fully evaluated. This study describes application of ICD-10 diagnosis codes for opioid use, dependence and abuse from an electronic health record (EHR) data extraction using data from the clinics' OUD patient registries and clinician/staff EHR entries.

DESIGN

Cross-sectional observational study.

SETTING

Four rural primary care clinics in Washington and Idaho, USA.

PARTICIPANTS

307 patients.

MEASUREMENTS

This study used three data sources from each clinic: (1) a limited dataset extracted from the EHR, (2) a clinic-based registry of patients with OUD and (3) the clinician/staff interface of the EHR (e.g. progress notes, problem list). Data source one included records with six commonly applied ICD-10 codes for opioid use, dependence and abuse: F11.10 (opioid abuse, uncomplicated), F11.20 (opioid dependence, uncomplicated), F11.21 (opioid dependence, in remission), F11.23 (opioid dependence with withdrawal), F11.90 (opioid use, unspecified, uncomplicated) and F11.99 (opioid use, unspecified with unspecified opioid-induced disorder). Care coordinators used data sources two and three to categorize each patient identified in data source one: (1) confirmed OUD diagnosis, (2) may have OUD but no confirmed OUD diagnosis, (3) chronic pain with no evidence of OUD and (4) no evidence for OUD or chronic pain.

FINDINGS

F11.10, F11.21 and F11.99 were applied most frequently to patients who had clinical diagnoses of OUD (64%, 89% and 79%, respectively). F11.20, F11.23 and F11.90 were applied to patients who had a diagnostic mix of OUD and chronic pain without OUD. The four clinics applied codes inconsistently.

CONCLUSIONS

Lack of uniform application of ICD diagnosis codes make it challenging to use diagnosis code data from EHR to identify a research population of persons with opioid use disorder.

摘要

背景与目的

国际疾病分类(ICD)诊断代码常用于研究中以识别阿片类药物使用障碍(OUD)患者,但尚未充分评估其在该目的下的准确性。本研究描述了使用从诊所 OUD 患者登记处和临床医生/工作人员电子健康记录(EHR)条目获取的数据从 EHR 中提取 ICD-10 阿片类药物使用、依赖和滥用诊断代码的应用。

设计

横断面观察性研究。

设置

美国华盛顿州和爱达荷州的四家农村初级保健诊所。

参与者

307 名患者。

测量

本研究使用每个诊所的三个数据源:(1)从 EHR 中提取的有限数据集,(2)基于诊所的 OUD 患者登记处和(3)EHR 的临床医生/工作人员界面(例如,进度记录、问题清单)。数据源 1 包括应用于阿片类药物使用、依赖和滥用的六个常见 ICD-10 代码的记录:F11.10(阿片类药物滥用,不伴并发症)、F11.20(阿片类药物依赖,不伴并发症)、F11.21(阿片类药物依赖,缓解期)、F11.23(阿片类药物依赖伴戒断)、F11.90(阿片类药物使用,未特指,不伴并发症)和 F11.99(阿片类药物使用,未特指伴未特指的阿片类药物引起的障碍)。护理协调员使用数据源 2 和 3 将数据源 1 中确定的每个患者分类:(1)确认 OUD 诊断,(2)可能患有 OUD 但未确诊 OUD,(3)无 OUD 证据的慢性疼痛和(4)无 OUD 或慢性疼痛证据。

结果

F11.10、F11.21 和 F11.99 最常用于有 OUD 临床诊断的患者(分别为 64%、89%和 79%)。F11.20、F11.23 和 F11.90 应用于 OUD 和慢性疼痛混合诊断而无 OUD 的患者。四家诊所的应用代码不一致。

结论

ICD 诊断代码应用缺乏统一,使得使用 EHR 中的诊断代码数据来识别阿片类药物使用障碍患者的研究人群具有挑战性。

相似文献

2
Variation in Clinical Characteristics and Longitudinal Outcomes in Individuals with Opioid Use Disorder Diagnosis Codes.
J Gen Intern Med. 2023 Feb;38(3):699-706. doi: 10.1007/s11606-022-07732-w. Epub 2022 Jul 11.
3
How Is Preoperative Opioid Use Associated With Readmissions and Outcomes in Lower Extremity Trauma?
Clin Orthop Relat Res. 2025 May 1;483(5):918-927. doi: 10.1097/CORR.0000000000003346. Epub 2024 Dec 20.
5
Automating the Addiction Behaviors Checklist for Problematic Opioid Use Identification.
JAMA Psychiatry. 2025 Apr 9. doi: 10.1001/jamapsychiatry.2025.0424.
7
Cannabis Legalization and Opioid Use Disorder in Veterans Health Administration Patients.
JAMA Health Forum. 2025 Jun 7;6(6):e251369. doi: 10.1001/jamahealthforum.2025.1369.
8
Factors associated with clinician treatment recommendations for patients with a new diagnosis of opioid use disorder.
J Subst Abuse Treat. 2022 Oct;141:108827. doi: 10.1016/j.jsat.2022.108827. Epub 2022 Jun 16.
10
Postpartum Opioid Prescribing in Patients with Opioid Use Prior to Birth.
Am J Perinatol. 2024 May;41(S 01):e1459-e1462. doi: 10.1055/s-0043-1767816. Epub 2023 Apr 10.

引用本文的文献

1
Implementation of screening and assessment tools for diagnosing opioid use disorder: A systematic review.
Drug Alcohol Depend Rep. 2025 Aug 20;16:100375. doi: 10.1016/j.dadr.2025.100375. eCollection 2025 Sep.
2
Prenatal opioid use disorder and child protective service involvement: Does consistent treatment matter?
J Subst Use Addict Treat. 2025 May;172:209681. doi: 10.1016/j.josat.2025.209681. Epub 2025 Mar 20.
3
Use of Medications for Opioid Use Disorder in Older Adults.
Am J Prev Med. 2025 May;68(5):1015-1021. doi: 10.1016/j.amepre.2025.01.019. Epub 2025 Jan 30.

本文引用的文献

1
The opioid epidemic: A worldwide exploratory study using the WHO pharmacovigilance database.
Addiction. 2023 Apr;118(4):771-775. doi: 10.1111/add.16081. Epub 2022 Nov 22.
4
Development of a machine learning algorithm for early detection of opioid use disorder.
Pharmacol Res Perspect. 2020 Dec;8(6):e00669. doi: 10.1002/prp2.669.
5
Validity of Incident Opioid Use Disorder (OUD) Diagnoses in Administrative Data: a Chart Verification Study.
J Gen Intern Med. 2021 May;36(5):1264-1270. doi: 10.1007/s11606-020-06339-3. Epub 2020 Nov 11.
6
Outpatient care for opioid use disorder among the commercially insured: Use of medication and psychosocial treatment.
J Subst Abuse Treat. 2020 Aug;115:108040. doi: 10.1016/j.jsat.2020.108040. Epub 2020 May 22.
8
Treatment Of Opioid Use Disorder Among Commercially Insured US Adults, 2008-17.
Health Aff (Millwood). 2020 Jun;39(6):993-1001. doi: 10.1377/hlthaff.2019.01041.
10
Medical utilization surrounding initial opioid-related diagnoses by coding method.
Am J Manag Care. 2020 Feb 1;26(2):e64-e68. doi: 10.37765/ajmc.2020.42403.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验