Suppr超能文献

发现 SARS-CoV-2 nsp16 中具有可成药性的隐藏口袋:使用变构抑制剂。

Discovery of a Druggable, Cryptic Pocket in SARS-CoV-2 nsp16 Using Allosteric Inhibitors.

机构信息

Department of Microbiology-Immunology and Center for Structural Biology of Infectious Diseases, Northwestern University, Feinberg School of Medicine, Chicago, Illinois 60611, United States.

Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague 6, 160 00, Czech Republic.

出版信息

ACS Infect Dis. 2023 Oct 13;9(10):1918-1931. doi: 10.1021/acsinfecdis.3c00203. Epub 2023 Sep 20.

Abstract

A collaborative, open-science team undertook discovery of novel small molecule inhibitors of the SARS-CoV-2 nsp16-nsp10 2'--methyltransferase using a high throughput screening approach with the potential to reveal new inhibition strategies. This screen yielded compound , a ligand possessing an electron-deficient double bond, as an inhibitor of SARS-CoV-2 nsp16 activity. Surprisingly, X-ray crystal structures revealed that covalently binds within a previously unrecognized cryptic pocket near the -adenosylmethionine binding cleft in a manner that prevents occupation by -adenosylmethionine. Using a multidisciplinary approach, we examined the mechanism of binding of compound to the nsp16 cryptic pocket and developed derivatives that inhibited nsp16 activity and murine hepatitis virus replication in rat lung epithelial cells but proved cytotoxic to cell lines canonically used to examine SARS-CoV-2 infection. Our study reveals the druggability of this newly discovered SARS-CoV-2 nsp16 cryptic pocket, provides novel tool compounds to explore the site, and suggests a new approach for discovery of nsp16 inhibition-based pan-coronavirus therapeutics through structure-guided drug design.

摘要

一个协作的、开放科学的团队采用高通量筛选方法发现了新型小分子抑制剂,这些抑制剂可以抑制 SARS-CoV-2 nsp16-nsp10 2'--甲基转移酶,具有揭示新的抑制策略的潜力。该筛选发现化合物 是一种带有缺电子双键的配体,可抑制 SARS-CoV-2 nsp16 的活性。令人惊讶的是,X 射线晶体结构揭示, 以一种阻止 - 腺苷甲硫氨酸结合的方式,共价结合在 - 腺苷甲硫氨酸结合裂隙附近以前未被识别的隐匿口袋中。我们采用多学科方法研究了化合物 与 nsp16 隐匿口袋结合的机制,并开发了 衍生物,这些衍生物抑制 nsp16 活性和鼠肝炎病毒在大鼠肺上皮细胞中的复制,但对通常用于研究 SARS-CoV-2 感染的细胞系有细胞毒性。我们的研究揭示了这个新发现的 SARS-CoV-2 nsp16 隐匿口袋的可药性,提供了新的工具化合物来探索该位点,并提出了一种通过基于结构的药物设计发现基于 nsp16 抑制的泛冠状病毒治疗方法的新方法。

相似文献

1
Discovery of a Druggable, Cryptic Pocket in SARS-CoV-2 nsp16 Using Allosteric Inhibitors.
ACS Infect Dis. 2023 Oct 13;9(10):1918-1931. doi: 10.1021/acsinfecdis.3c00203. Epub 2023 Sep 20.
2
Structural and functional insights into the 2'-O-methyltransferase of SARS-CoV-2.
Virol Sin. 2024 Aug;39(4):619-631. doi: 10.1016/j.virs.2024.07.001. Epub 2024 Jul 3.
5
SARS-CoV-2 Nsp16 activation mechanism and a cryptic pocket with pan-coronavirus antiviral potential.
bioRxiv. 2020 Dec 10:2020.12.10.420109. doi: 10.1101/2020.12.10.420109.
6
Mn coordinates Cap-0-RNA to align substrates for efficient 2'--methyl transfer by SARS-CoV-2 nsp16.
Sci Signal. 2021 Jun 29;14(689):eabh2071. doi: 10.1126/scisignal.abh2071.
8
Identification of naphthyridine and quinoline derivatives as potential Nsp16-Nsp10 inhibitors: a pharmacoinformatics study.
J Biomol Struct Dyn. 2022 Jun;40(9):3899-3906. doi: 10.1080/07391102.2020.1851305. Epub 2020 Nov 30.
9
Biochemical and structural insights into the mechanisms of SARS coronavirus RNA ribose 2'-O-methylation by nsp16/nsp10 protein complex.
PLoS Pathog. 2011 Oct;7(10):e1002294. doi: 10.1371/journal.ppat.1002294. Epub 2011 Oct 13.

引用本文的文献

4
Perspective for Drug Discovery Targeting SARS Coronavirus Methyltransferases: Function, Structure and Inhibition.
J Med Chem. 2024 Nov 14;67(21):18642-18655. doi: 10.1021/acs.jmedchem.4c01749. Epub 2024 Oct 31.
5
Structural Basis for Inhibition of the SARS-CoV-2 nsp16 by Substrate-Based Dual Site Inhibitors.
ChemMedChem. 2024 Dec 16;19(24):e202400618. doi: 10.1002/cmdc.202400618. Epub 2024 Nov 4.
7
Native Mass Spectrometry Dissects the Structural Dynamics of an Allosteric Heterodimer of SARS-CoV-2 Nonstructural Proteins.
J Am Soc Mass Spectrom. 2024 May 1;35(5):912-921. doi: 10.1021/jasms.3c00453. Epub 2024 Mar 27.

本文引用的文献

1
SS148 and WZ16 inhibit the activities of nsp10-nsp16 complexes from all seven human pathogenic coronaviruses.
Biochim Biophys Acta Gen Subj. 2023 Apr;1867(4):130319. doi: 10.1016/j.bbagen.2023.130319. Epub 2023 Feb 9.
2
Recent advances in small-molecular therapeutics for COVID-19.
Precis Clin Med. 2022 Sep 24;5(4):pbac024. doi: 10.1093/pcmedi/pbac024. eCollection 2022 Dec.
4
The mechanism of RNA capping by SARS-CoV-2.
Nature. 2022 Sep;609(7928):793-800. doi: 10.1038/s41586-022-05185-z. Epub 2022 Aug 9.
5
Elucidation of the tyrosinase/O/monophenol ternary intermediate that dictates the monooxygenation mechanism in melanin biosynthesis.
Proc Natl Acad Sci U S A. 2022 Aug 16;119(33):e2205619119. doi: 10.1073/pnas.2205619119. Epub 2022 Aug 8.
7
Defining the risk of SARS-CoV-2 variants on immune protection.
Nature. 2022 May;605(7911):640-652. doi: 10.1038/s41586-022-04690-5. Epub 2022 Mar 31.
9
Styryl Group, a Friend or Foe in Medicinal Chemistry.
ChemMedChem. 2022 Apr 5;17(7):e202100706. doi: 10.1002/cmdc.202100706. Epub 2022 Mar 2.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验