Suppr超能文献

神经元 DNA 双链断裂导致基因组结构变异和神经退行性变中的三维基因组破坏。

Neuronal DNA double-strand breaks lead to genome structural variations and 3D genome disruption in neurodegeneration.

机构信息

Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.

Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA.

出版信息

Cell. 2023 Sep 28;186(20):4404-4421.e20. doi: 10.1016/j.cell.2023.08.038.

Abstract

Persistent DNA double-strand breaks (DSBs) in neurons are an early pathological hallmark of neurodegenerative diseases including Alzheimer's disease (AD), with the potential to disrupt genome integrity. We used single-nucleus RNA-seq in human postmortem prefrontal cortex samples and found that excitatory neurons in AD were enriched for somatic mosaic gene fusions. Gene fusions were particularly enriched in excitatory neurons with DNA damage repair and senescence gene signatures. In addition, somatic genome structural variations and gene fusions were enriched in neurons burdened with DSBs in the CK-p25 mouse model of neurodegeneration. Neurons enriched for DSBs also had elevated levels of cohesin along with progressive multiscale disruption of the 3D genome organization aligned with transcriptional changes in synaptic, neuronal development, and histone genes. Overall, this study demonstrates the disruption of genome stability and the 3D genome organization by DSBs in neurons as pathological steps in the progression of neurodegenerative diseases.

摘要

神经元中持续存在的 DNA 双链断裂(DSBs)是包括阿尔茨海默病(AD)在内的神经退行性疾病的早期病理标志,有可能破坏基因组的完整性。我们使用人类死后前额叶皮层样本的单核 RNA-seq 发现,AD 中的兴奋性神经元中体细胞镶嵌基因融合富集。基因融合在具有 DNA 损伤修复和衰老基因特征的兴奋性神经元中特别丰富。此外,在 CK-p25 神经退行性变小鼠模型中,神经元中 DSBs 负担过重,体细胞基因组结构变异和基因融合也丰富。富含 DSBs 的神经元还具有较高水平的黏连蛋白,以及 3D 基因组组织的多尺度渐进性破坏,与突触、神经元发育和组蛋白基因的转录变化一致。总的来说,这项研究表明,神经元中 DSB 的出现破坏了基因组的稳定性和 3D 基因组组织,这是神经退行性疾病进展中的病理步骤。

相似文献

2
Early neuronal accumulation of DNA double strand breaks in Alzheimer's disease.
Acta Neuropathol Commun. 2019 May 17;7(1):77. doi: 10.1186/s40478-019-0723-5.
3
DNA double-strand breaks: a potential therapeutic target for neurodegenerative diseases.
Chromosome Res. 2019 Dec;27(4):345-364. doi: 10.1007/s10577-019-09617-x. Epub 2019 Nov 9.
4
DNA Double Strand Breaks: A Common Theme in Neurodegenerative Diseases.
Curr Alzheimer Res. 2016;13(11):1208-1218. doi: 10.2174/1567205013666160401114915.
7
DNA double-strand breaks as drivers of neural genomic change, function, and disease.
DNA Repair (Amst). 2018 Nov;71:158-163. doi: 10.1016/j.dnarep.2018.08.019. Epub 2018 Aug 23.
8
Genome Stability by DNA Polymerase β in Neural Progenitors Contributes to Neuronal Differentiation in Cortical Development.
J Neurosci. 2017 Aug 30;37(35):8444-8458. doi: 10.1523/JNEUROSCI.0665-17.2017. Epub 2017 Aug 1.
9
An Adaptive Role for DNA Double-Strand Breaks in Hippocampus-Dependent Learning and Memory.
Int J Mol Sci. 2022 Jul 28;23(15):8352. doi: 10.3390/ijms23158352.
10
Examining the Role of HDACs in DNA Double-Strand Break Repair in Neurons.
Methods Mol Biol. 2019;1983:225-234. doi: 10.1007/978-1-4939-9434-2_13.

引用本文的文献

1
Strategies for delivering drugs across the blood-brain barrier for the treatment of neurodegenerative diseases.
Front Drug Deliv. 2025 Aug 26;5:1644633. doi: 10.3389/fddev.2025.1644633. eCollection 2025.
2
AAV-dCas9 vector unsilences paternal Ube3a in neurons by impeding Ube3a-ATS transcription.
Commun Biol. 2025 Sep 2;8(1):1332. doi: 10.1038/s42003-025-08794-2.
3
Single-cell sequencing: accurate disease detection.
Clin Transl Oncol. 2025 Aug 16. doi: 10.1007/s12094-025-04007-8.
5
DNA polymerase β suppresses somatic indels at CpG dinucleotides in developing cortical neurons.
Proc Natl Acad Sci U S A. 2025 Aug 19;122(33):e2506846122. doi: 10.1073/pnas.2506846122. Epub 2025 Aug 13.
7
Structural variants in the 3D genome as drivers of disease.
Nat Rev Genet. 2025 Jun 30. doi: 10.1038/s41576-025-00862-x.
8
Mechanism of cytarabine-induced neurotoxicity.
Nature. 2025 Jun 25. doi: 10.1038/s41586-025-09210-9.
9
infection induces chromatin restructuring in host cells to activate immune responses.
Front Immunol. 2025 Jun 5;16:1574006. doi: 10.3389/fimmu.2025.1574006. eCollection 2025.

本文引用的文献

1
Epigenomic dissection of Alzheimer's disease pinpoints causal variants and reveals epigenome erosion.
Cell. 2023 Sep 28;186(20):4422-4437.e21. doi: 10.1016/j.cell.2023.08.040.
4
A NPAS4-NuA4 complex couples synaptic activity to DNA repair.
Nature. 2023 Feb;614(7949):732-741. doi: 10.1038/s41586-023-05711-7. Epub 2023 Feb 15.
5
Loss of epigenetic information as a cause of mammalian aging.
Cell. 2023 Jan 19;186(2):305-326.e27. doi: 10.1016/j.cell.2022.12.027. Epub 2023 Jan 12.
6
The NHGRI-EBI GWAS Catalog: knowledgebase and deposition resource.
Nucleic Acids Res. 2023 Jan 6;51(D1):D977-D985. doi: 10.1093/nar/gkac1010.
7
Subtype-specific 3D genome alteration in acute myeloid leukaemia.
Nature. 2022 Nov;611(7935):387-398. doi: 10.1038/s41586-022-05365-x. Epub 2022 Oct 26.
8
The three-dimensional landscape of cortical chromatin accessibility in Alzheimer's disease.
Nat Neurosci. 2022 Oct;25(10):1366-1378. doi: 10.1038/s41593-022-01166-7. Epub 2022 Sep 28.
10
Haplotype-aware analysis of somatic copy number variations from single-cell transcriptomes.
Nat Biotechnol. 2023 Mar;41(3):417-426. doi: 10.1038/s41587-022-01468-y. Epub 2022 Sep 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验