Institute of Biotechnology, Department of Medical Biotechnology and Integrative Physiology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 602105, Tamil Nadu, India.
Laboratory of Environmental Health and Ecotoxicology, Department of Environmental Sciences, Jahangirnagar University, Savar, Dhaka-1342, Bangladesh.
Environ Monit Assess. 2023 Oct 2;195(11):1264. doi: 10.1007/s10661-023-11890-7.
Microplastic (MP) tiny fragments (< 5 mm) of conventional and specialized industrial polymers are persistent and ubiquitous in both aquatic and terrestrial ecosystem. Breathing, ingestion, consumption of food stuffs, potable water, and skin are possible routes of MP exposure that pose potential human health risk. Various microorganisms including bacteria, cyanobacteria, and microalgae rapidly colonized on MP surfaces which initiate biofilm formation. It gradually changed the MP surface chemistry and polymer properties that attract environmental metals. Physicochemical and environmental parameters like polymer type, dissolved organic matter (DOM), pH, salinity, ion concentrations, and microbial community compositions regulate metal adsorption on MP biofilm surface. A set of highly conserved proteins tightly regulates metal uptake, subcellular distribution, storage, and transport to maintain cellular homeostasis. Exposure of metal-MP biofilm can disrupt that cellular homeostasis to induce toxicities. Imbalances in metal concentrations therefore led to neuronal network dysfunction, ROS, mitochondrial damage in diseases like Alzheimer's disease (AD), Parkinson's disease (PD), and Prion disorder. This review focuses on the biofilm development on MP surfaces, factors controlling the growth of MP biofilm which triggered metal accumulation to induce neurotoxicological consequences in human body and stategies to reestablish the homeostasis. Thus, the present study gives a new approach on the health risks of heavy metals associated with MP biofilm in which biofilms trigger metal accumulation and MPs serve as a vector for those accumulated metals causing metal dysbiosis in human body.
微塑料(MP)是常规和专用工业聚合物的微小碎片(<5 毫米),在水生和陆地生态系统中普遍存在且持久。呼吸、摄入、食用食物、饮用水和皮肤都可能是接触 MP 的途径,从而对人类健康构成潜在风险。各种微生物,包括细菌、蓝藻和微藻,迅速在 MP 表面定殖,从而引发生物膜的形成。它逐渐改变了 MP 表面的化学性质和聚合物特性,从而吸引了环境中的金属。物理化学和环境参数,如聚合物类型、溶解有机物 (DOM)、pH 值、盐度、离子浓度和微生物群落组成,调节金属在 MP 生物膜表面的吸附。一组高度保守的蛋白质严格调节金属的摄取、亚细胞分布、储存和运输,以维持细胞内的稳态。金属-MP 生物膜的暴露会破坏这种细胞内稳态,从而引发毒性。因此,金属浓度的失衡导致神经网络功能障碍、ROS、线粒体损伤,从而引发阿尔茨海默病 (AD)、帕金森病 (PD) 和朊病毒疾病等疾病。本综述重点介绍了 MP 表面生物膜的发展,以及控制 MP 生物膜生长的因素,这些因素引发了金属的积累,从而对人体产生神经毒理学后果,并提出了重新建立体内平衡的策略。因此,本研究为与 MP 生物膜相关的重金属的健康风险提供了一种新的方法,其中生物膜引发金属积累,而 MPs 则作为这些积累金属的载体,导致人体内金属失调。