Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China.
School of Science, Dalian Maritime University, Dalian 116026, China.
J Chem Inf Model. 2024 Apr 8;64(7):2393-2404. doi: 10.1021/acs.jcim.3c01017. Epub 2023 Oct 6.
Antimicrobial peptides (AMPs) are small molecular polypeptides that can be widely used in the prevention and treatment of microbial infections. Although many computational models have been proposed to help identify AMPs, a high-performance and interpretable model is still lacking. In this study, new benchmark data sets are collected and processed, and a stacking deep architecture named AMPpred-MFA is carefully designed to discover and identify AMPs. Multiple features and a multihead attention mechanism are utilized on the basis of a bidirectional long short-term memory (LSTM) network and a convolutional neural network (CNN). The effectiveness of AMPpred-MFA is verified through five independent tests conducted in batches. Experimental results show that AMPpred-MFA achieves a state-of-the-art performance. The visualization interpretability analyses and ablation experiments offer a further understanding of the model behavior and performance, validating the importance of our feature representation and stacking architecture, especially the multihead attention mechanism. Therefore, AMPpred-MFA can be considered a reliable and efficient approach to understanding and predicting AMPs.
抗菌肽 (AMPs) 是小分子多肽,可广泛用于预防和治疗微生物感染。尽管已经提出了许多计算模型来帮助识别 AMPs,但仍然缺乏高性能和可解释的模型。在这项研究中,收集和处理了新的基准数据集,并精心设计了一种名为 AMPpred-MFA 的堆叠深度架构来发现和识别 AMPs。在双向长短期记忆 (LSTM) 网络和卷积神经网络 (CNN) 的基础上,利用了多种特征和多头注意力机制。通过五次独立的分批测试验证了 AMPpred-MFA 的有效性。实验结果表明,AMPred-MFA 实现了最先进的性能。可视化可解释性分析和消融实验进一步理解了模型的行为和性能,验证了我们的特征表示和堆叠架构的重要性,特别是多头注意力机制。因此,AMPred-MFA 可以被认为是一种可靠和高效的理解和预测 AMPs 的方法。