Suppr超能文献

芳香族L-氨基酸脱羧酶缺乏症

Aromatic L-Amino Acid Decarboxylase Deficiency

作者信息

Blau Nenad, Pearson Toni S, Kurian Manju A, Elsea Sarah H

机构信息

Division of Metabolism, University Children's Hospital Zurich, Zurich, Switzerland

Departments of Pediatrics and Neurology, Nationwide Children's Hospital;, Ohio State University College of Medicine, Columbus, Ohio

Abstract

CLINICAL CHARACTERISTICS

Individuals with aromatic L-amino acid decarboxylase (AADC) deficiency typically have complex symptoms, including motor, behavioral, cognitive, and autonomic findings. Symptom onset is in early infancy, typically within the first six months of life. The most common initial symptoms are often nonspecific, and include feeding difficulties, hypotonia, and developmental delay. More specific symptoms include oculogyric crises (which occur in the vast majority of affected individuals, typically starting in infancy), movement disorders (especially dystonia), and autonomic dysfunction (excessive sweating, temperature instability, ptosis, nasal congestion, hypoglycemic episodes). Sleep disturbance is present in a majority of affected individuals and can include insomnia, hypersomnia, or both. Mood disturbance, including irritability and anxiety, are also common. Brain MRI is typically either normal or may demonstrate nonspecific abnormalities, such as mild diffuse cerebral atrophy or delayed myelination. Seizures are an uncommon finding, occurring in fewer than 5% of affected individuals.

DIAGNOSIS/TESTING: The diagnosis of AADC deficiency is established in a proband who has the following core diagnostic testing results: biallelic pathogenic variants in identified by molecular genetic testing OR cerebrospinal fluid (CSF) or plasma neurotransmitter profile consistent with AADC deficiency AND significantly reduced AADC enzyme activity in plasma.

MANAGEMENT

Treatments can include the use of dopamine agonists (pramipexole, ropinirole, rotigotine patch, or bromocriptine), MAO inhibitors (selegiline or tranylcypromine), vitamin B (pyridoxine, pyridoxal phosphate), folinic acid, and (in rare cases) levodopa in a preparation without carbidopa. Putaminal delivery of eladocagene exuparvovec was approved in the European Union and United Kingdom for the treatment of individuals aged 18 months and older with a clinical, molecular, and genetically confirmed diagnosis of AADC deficiency with a severe phenotype (i.e., individuals who cannot sit, stand, or walk). This treatment was also approved by the FDA for use in the United States to treat individuals of any disease severity with sufficient skull maturity to safely tolerate the neurosurgical procedure. Feeding therapy with consideration of gastrostomy tube placement or jejunal feeding; anticholinergic drugs and/or sleep induction for movement disorders / oculogyric crisis; xylometazoline or oxymetazoline nasal drops for autonomic dysfunction; melatonin or clonidine for sleep disturbance; and standard therapies for epilepsy, developmental delay / intellectual disability, musculoskeletal issues, bowel dysfunction (constipation, diarrhea, or gastroesophageal reflux disease), strabismus, visual impairment, obstructive sleep apnea, and hypoglycemia. At each visit: measurement of growth parameters; evaluation of nutritional status and safety of oral intake; monitor frequency and severity of oculogyric crises and movement disorders; assess for new manifestations, such as seizures, changes in tone, and movement disorders; monitor developmental progress and educational needs; monitor for behavioral issues and symptoms of anxiety, ADHD, ASD, aggression, & self-injury; clinical assessment for kyphoscoliosis and hip dislocation; monitor for constipation, diarrhea, gastroesophageal reflux, and abdominal discomfort or pain; and monitor for evidence of aspiration, respiratory insufficiency, sleep disturbance, and frequency of respiratory infections. Annually: obtain hip and spinal radiographs (until skeletal maturity); consider cardiology evaluation; consider continuous glucose monitoring, especially in younger affected individuals. Per treating clinicians: ophthalmology evaluation; monitor for cardiac function and rhythm defects; monitor for symptoms of obstructive sleep apnea and nasal congestion. In those on levodopa treatment: monitor CSF neurotransmitters, including 5-methyltetrahydrofolate levels, as clinically indicated to assess for secondary folate deficiency, particularly if neurologic symptoms worsen. In those on bromocriptine therapy: echocardiogram and EKG every 6-12 months to monitor for vavlulopathy caused by valve fibrosis (the risk is lower than with other ergot-derived dopamine agonists such as pergolide, but not absent). Ergot-derived dopamine agonists with strong serotonergic (5-HT2B) agonist action (pergolide and cabergoline) due to risk of cardiac valvulopathy and other fibrotic complications; levodopa in most affected individuals who do not have ligand binding site pathogenic variants; dopamine receptor antagonists (e.g., metoclopramide, antipsychotic medications), which may worsen primary disease symptoms. Testing of all at-risk sibs of any age is warranted to allow for early diagnosis and treatment of AADC deficiency. Molecular genetic testing is recommended if the pathogenic variants in the family are known; measurement of CSF neurotransmitters (to evaluate for the characteristic profile) and plasma AADC enzyme activity is recommended if the pathogenic variants in the family are not known. Successful pregnancy has been documented in an affected woman with a mild phenotype who took low-dose pramipexole and selegiline during pregnancy.

GENETIC COUNSELING

AADC deficiency is inherited in an autosomal recessive manner. If both parents are known to be heterozygous for a pathogenic variant, each sib of an affected individual has at conception a 25% chance of being affected, a 50% chance of being an asymptomatic carrier, and a 25% chance of being unaffected and not a carrier. Heterozygotes (carriers) are asymptomatic. If both pathogenic variants have been identified in an affected family member, molecular genetic carrier testing for at-risk relatives and prenatal and preimplantation genetic testing are possible.

摘要

临床特征

芳香族L-氨基酸脱羧酶(AADC)缺乏症患者通常有复杂的症状,包括运动、行为、认知和自主神经方面的表现。症状通常在婴儿早期出现,一般在出生后的头六个月内。最常见的初始症状往往是非特异性的,包括喂养困难、肌张力减退和发育迟缓。更具特异性的症状包括动眼危象(绝大多数受影响个体都会出现,通常始于婴儿期)、运动障碍(尤其是肌张力障碍)和自主神经功能障碍(多汗、体温不稳定、上睑下垂、鼻塞、低血糖发作)。大多数受影响个体存在睡眠障碍,可能包括失眠、嗜睡或两者皆有。情绪障碍,如易怒和焦虑,也很常见。脑部磁共振成像(MRI)通常正常,或可能显示非特异性异常,如轻度弥漫性脑萎缩或髓鞘形成延迟。癫痫发作并不常见,不到5%的受影响个体出现癫痫发作。

诊断/检测:AADC缺乏症的诊断需先证者具有以下核心诊断检测结果:通过分子基因检测鉴定出双等位基因致病性变异,或脑脊液(CSF)或血浆神经递质谱与AADC缺乏症一致,且血浆中AADC酶活性显著降低。

治疗

治疗方法可包括使用多巴胺激动剂(普拉克索、罗匹尼罗、罗替戈汀贴片或溴隐亭)、单胺氧化酶(MAO)抑制剂(司来吉兰或反苯环丙胺)、维生素B(吡哆醇、磷酸吡哆醛)、亚叶酸,以及(在罕见情况下)不含卡比多巴的左旋多巴制剂。在欧盟和英国,脑内注射eladocagene exuparvovec已被批准用于治疗18个月及以上、临床、分子和基因确诊为AADC缺乏症且具有严重表型(即无法坐、站或行走的个体)。在美国,该治疗方法也获得了美国食品药品监督管理局(FDA)批准用于治疗任何疾病严重程度、颅骨成熟度足以安全耐受神经外科手术的个体。考虑胃造瘘管放置或空肠喂养的喂养治疗;针对运动障碍/动眼危象使用抗胆碱能药物和/或诱导睡眠药物;针对自主神经功能障碍使用赛洛唑啉或羟甲唑啉滴鼻剂;针对睡眠障碍使用褪黑素或可乐定;以及针对癫痫、发育迟缓/智力残疾、肌肉骨骼问题、肠道功能障碍(便秘、腹泻或胃食管反流病)、斜视、视力障碍、阻塞性睡眠呼吸暂停和低血糖的标准治疗方法。每次就诊时:测量生长参数;评估营养状况和口服摄入安全性;监测动眼危象和运动障碍的频率及严重程度;评估是否有新的表现,如癫痫发作、肌张力变化和运动障碍;监测发育进展和教育需求;监测行为问题以及焦虑、注意力缺陷多动障碍(ADHD)、自闭症谱系障碍(ASD)、攻击行为和自我伤害的症状;进行脊柱侧弯和髋关节脱位的临床评估;监测便秘、腹泻、胃食管反流以及腹部不适或疼痛;监测是否有呛咳、呼吸功能不全、睡眠障碍和呼吸道感染频率的证据。每年:进行髋关节和脊柱X线检查(直至骨骼成熟);考虑心脏科评估;考虑进行持续血糖监测,尤其是在年龄较小的受影响个体中。每位治疗医生:进行眼科评估;监测心脏功能和节律缺陷;监测阻塞性睡眠呼吸暂停和鼻塞症状。对于接受左旋多巴治疗的患者:根据临床指征监测脑脊液神经递质,包括5-甲基四氢叶酸水平,以评估是否继发叶酸缺乏,特别是在神经症状恶化时。对于接受溴隐亭治疗的患者:每6 - 12个月进行超声心动图和心电图检查,以监测瓣膜纤维化引起的瓣膜病(风险低于其他麦角衍生的多巴胺激动剂如培高利特,但并非不存在)由于具有较强的5-羟色胺(5-HT2B)激动剂作用,具有心脏瓣膜病和其他纤维化并发症风险的麦角衍生多巴胺激动剂(培高利特和卡麦角林);大多数没有配体结合位点致病性变异的受影响个体使用左旋多巴;多巴胺受体拮抗剂(如甲氧氯普胺、抗精神病药物),可能会加重原发性疾病症状。对所有任何年龄的高危同胞进行检测是必要的,以便对AADC缺乏症进行早期诊断和治疗。如果已知家族中的致病性变异,建议进行分子基因检测;如果家族中的致病性变异未知,建议测量脑脊液神经递质(以评估特征性谱)和血浆AADC酶活性。一名具有轻度表型的受影响女性在怀孕期间服用低剂量普拉克索和司来吉兰,已记录有成功妊娠的情况。

遗传咨询

AADC缺乏症以常染色体隐性方式遗传。如果已知父母双方均为某一致病性变异的杂合子,受影响个体的每个同胞在受孕时有25%的几率受到影响,50%的几率为无症状携带者,25%的几率未受影响且不是携带者。杂合子(携带者)无症状。如果在受影响的家庭成员中已鉴定出两个致病性变异,则可以对高危亲属进行分子基因携带者检测以及进行产前和植入前基因检测。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验