Suppr超能文献

全球鉴定 SWI/SNF 靶点揭示 EP400 的代偿作用。

Global identification of SWI/SNF targets reveals compensation by EP400.

机构信息

Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; Ludwig Center at Harvard, Boston, MA 02115, USA.

Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA.

出版信息

Cell. 2023 Nov 22;186(24):5290-5307.e26. doi: 10.1016/j.cell.2023.10.006. Epub 2023 Nov 2.

Abstract

Mammalian SWI/SNF chromatin remodeling complexes move and evict nucleosomes at gene promoters and enhancers to modulate DNA access. Although SWI/SNF subunits are commonly mutated in disease, therapeutic options are limited by our inability to predict SWI/SNF gene targets and conflicting studies on functional significance. Here, we leverage a fast-acting inhibitor of SWI/SNF remodeling to elucidate direct targets and effects of SWI/SNF. Blocking SWI/SNF activity causes a rapid and global loss of chromatin accessibility and transcription. Whereas repression persists at most enhancers, we uncover a compensatory role for the EP400/TIP60 remodeler, which reestablishes accessibility at most promoters during prolonged loss of SWI/SNF. Indeed, we observe synthetic lethality between EP400 and SWI/SNF in cancer cell lines and human cancer patient data. Our data define a set of molecular genomic features that accurately predict gene sensitivity to SWI/SNF inhibition in diverse cancer cell lines, thereby improving the therapeutic potential of SWI/SNF inhibitors.

摘要

哺乳动物的 SWI/SNF 染色质重塑复合物在基因启动子和增强子处移动并驱逐核小体,以调节 DNA 的可及性。尽管 SWI/SNF 亚基在疾病中经常发生突变,但由于我们无法预测 SWI/SNF 基因靶点,以及关于功能意义的相互矛盾的研究,治疗选择受到限制。在这里,我们利用一种快速作用的 SWI/SNF 重塑抑制剂来阐明 SWI/SNF 的直接靶点和作用。阻断 SWI/SNF 活性会导致染色质可及性和转录的快速和全局丧失。虽然大多数增强子仍然受到抑制,但我们发现 EP400/TIP60 重塑器具有代偿作用,在 SWI/SNF 长期缺失期间,它在大多数启动子处重新建立可及性。事实上,我们在癌细胞系和人类癌症患者数据中观察到 EP400 和 SWI/SNF 之间的合成致死性。我们的数据定义了一组分子基因组特征,这些特征可以准确预测不同癌细胞系中 SWI/SNF 抑制的基因敏感性,从而提高 SWI/SNF 抑制剂的治疗潜力。

相似文献

1
Global identification of SWI/SNF targets reveals compensation by EP400.
Cell. 2023 Nov 22;186(24):5290-5307.e26. doi: 10.1016/j.cell.2023.10.006. Epub 2023 Nov 2.
3
The SWI/SNF Complex: A Frequently Mutated Chromatin Remodeling Complex in Cancer.
Cancer Treat Res. 2023;190:211-244. doi: 10.1007/978-3-031-45654-1_7.
6
SWI/SNF-dependent genes are defined by their chromatin landscape.
Cell Rep. 2024 Mar 26;43(3):113855. doi: 10.1016/j.celrep.2024.113855. Epub 2024 Mar 1.
7
The role of the SWI/SNF chromatin remodeling complex in pancreatic ductal adenocarcinoma.
Cancer Sci. 2021 Feb;112(2):490-497. doi: 10.1111/cas.14768. Epub 2020 Dec 28.
8
BAFfling pathologies: Alterations of BAF complexes in cancer.
Cancer Lett. 2018 Apr 10;419:266-279. doi: 10.1016/j.canlet.2018.01.046. Epub 2018 Jan 31.
9
Diverse roles and interactions of the SWI/SNF chromatin remodeling complex revealed using global approaches.
PLoS Genet. 2011 Mar;7(3):e1002008. doi: 10.1371/journal.pgen.1002008. Epub 2011 Mar 3.
10
Functional selectivity of recombinant mammalian SWI/SNF subunits.
Genes Dev. 2000 Oct 1;14(19):2441-51. doi: 10.1101/gad.828000.

引用本文的文献

1
Mutual Antagonism Between PRC1 Condensates and SWI/SNF in Chromatin Regulation.
bioRxiv. 2025 Aug 26:2025.08.25.672128. doi: 10.1101/2025.08.25.672128.
2
Precise modulation of BRG1 levels reveals features of mSWI/SNF dosage sensitivity.
Nat Genet. 2025 Aug 22. doi: 10.1038/s41588-025-02305-z.
3
Protein arginine methyltransferase 5 sustains Tip60-EP400 complex via SRSF1 in Merkel cell carcinoma.
Life Sci Alliance. 2025 Aug 22;8(11). doi: 10.26508/lsa.202503316. Print 2025 Nov.
4
β-catenin functions as a molecular adapter for disordered cBAF interactions.
Mol Cell. 2025 Jul 15. doi: 10.1016/j.molcel.2025.06.026.
7
Widespread impact of nucleosome remodelers on transcription at cis-regulatory elements.
Cell Rep. 2025 Jun 24;44(6):115767. doi: 10.1016/j.celrep.2025.115767. Epub 2025 May 30.
9
Chromatin remodeling in lymphocytic function and fate: the multifaceted roles of SWI/SNF complex.
Front Immunol. 2025 Apr 24;16:1575857. doi: 10.3389/fimmu.2025.1575857. eCollection 2025.
10
The SWI/SNF PBAF complex facilitates REST occupancy at repressive chromatin.
Mol Cell. 2025 May 1;85(9):1714-1729.e7. doi: 10.1016/j.molcel.2025.03.026. Epub 2025 Apr 18.

本文引用的文献

1
Targeting SWI/SNF ATPases in H3.3K27M diffuse intrinsic pontine gliomas.
Proc Natl Acad Sci U S A. 2023 May 2;120(18):e2221175120. doi: 10.1073/pnas.2221175120. Epub 2023 Apr 24.
2
U1 snRNP increases RNA Pol II elongation rate to enable synthesis of long genes.
Mol Cell. 2023 Apr 20;83(8):1264-1279.e10. doi: 10.1016/j.molcel.2023.03.002. Epub 2023 Mar 24.
4
Human SMARCA5 is continuously required to maintain nucleosome spacing.
Mol Cell. 2023 Feb 16;83(4):507-522.e6. doi: 10.1016/j.molcel.2022.12.018. Epub 2023 Jan 10.
5
Tip60-mediated H2A.Z acetylation promotes neuronal fate specification and bivalent gene activation.
Mol Cell. 2022 Dec 15;82(24):4627-4646.e14. doi: 10.1016/j.molcel.2022.11.002. Epub 2022 Nov 22.
6
Integrator endonuclease drives promoter-proximal termination at all RNA polymerase II-transcribed loci.
Mol Cell. 2022 Nov 17;82(22):4232-4245.e11. doi: 10.1016/j.molcel.2022.10.004. Epub 2022 Oct 28.
7
BAF Complex Maintains Glioma Stem Cells in Pediatric H3K27M Glioma.
Cancer Discov. 2022 Dec 2;12(12):2880-2905. doi: 10.1158/2159-8290.CD-21-1491.
9
Screening thousands of transcribed coding and non-coding regions reveals sequence determinants of RNA polymerase II elongation potential.
Nat Struct Mol Biol. 2022 Jun;29(6):613-620. doi: 10.1038/s41594-022-00785-9. Epub 2022 Jun 9.
10
Chromatin accessibility profiling by ATAC-seq.
Nat Protoc. 2022 Jun;17(6):1518-1552. doi: 10.1038/s41596-022-00692-9. Epub 2022 Apr 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验