Suppr超能文献

用于被动声学监测中鉴定新热带蛙类鸣声的基准数据集。

A dataset for benchmarking Neotropical anuran calls identification in passive acoustic monitoring.

机构信息

Instituto de Investigación de Recursos Biológicos Alexander von Humboldt, Avenida Paseo Bolívar 16-20, Bogotá, Colombia.

K Lisa Yang Center for Conservation Bioacoustics, Cornell Lab of Ornithology, Cornell University, 159 Sapsucker woods road, 14850, Ithaca, New York, USA.

出版信息

Sci Data. 2023 Nov 6;10(1):771. doi: 10.1038/s41597-023-02666-2.

Abstract

Global change is predicted to induce shifts in anuran acoustic behavior, which can be studied through passive acoustic monitoring (PAM). Understanding changes in calling behavior requires automatic identification of anuran species, which is challenging due to the particular characteristics of neotropical soundscapes. In this paper, we introduce a large-scale multi-species dataset of anuran amphibians calls recorded by PAM, that comprises 27 hours of expert annotations for 42 different species from two Brazilian biomes. We provide open access to the dataset, including the raw recordings, experimental setup code, and a benchmark with a baseline model of the fine-grained categorization problem. Additionally, we highlight the challenges of the dataset to encourage machine learning researchers to solve the problem of anuran call identification towards conservation policy. All our experiments and resources have been made available at https://soundclim.github.io/anuraweb/ .

摘要

全球变化预计会引起蛙类声学行为的转变,这可以通过被动声学监测 (PAM) 进行研究。了解叫声行为的变化需要自动识别蛙类物种,但由于新热带地区声音景观的特殊特征,这具有挑战性。在本文中,我们介绍了一个由 PAM 记录的蛙类两栖动物叫声的大规模多物种数据集,其中包含两个巴西生物群落中 42 个不同物种的 27 小时专家注释。我们提供了数据集的开放访问,包括原始录音、实验设置代码以及细粒度分类问题的基线模型基准。此外,我们强调了数据集的挑战,以鼓励机器学习研究人员解决蛙类叫声识别问题,以支持保护政策。我们所有的实验和资源都可以在 https://soundclim.github.io/anuraweb/ 上获得。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9472/10628131/f758f7907c50/41597_2023_2666_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验