Suppr超能文献

人工智能驱动的抗菌肽发现。

Artificial intelligence-driven antimicrobial peptide discovery.

机构信息

Faculty of Mathematics, Informatics and Mechanics, University of Warsaw, Banacha 2, 02-097, Warsaw, Poland.

出版信息

Curr Opin Struct Biol. 2023 Dec;83:102733. doi: 10.1016/j.sbi.2023.102733. Epub 2023 Nov 21.

Abstract

Antimicrobial peptides (AMPs) emerge as promising agents against antimicrobial resistance, providing an alternative to conventional antibiotics. Artificial intelligence (AI) revolutionized AMP discovery through both discrimination and generation approaches. The discriminators aid in the identification of promising candidates by predicting key peptide properties such as activity and toxicity, while the generators learn the distribution of peptides and enable sampling novel AMP candidates, either de novo or as analogs of a prototype peptide. Moreover, the controlled generation of AMPs with desired properties is achieved by discriminator-guided filtering, positive-only learning, latent space sampling, as well as conditional and optimized generation. Here we review recent achievements in AI-driven AMP discovery, highlighting the most exciting directions.

摘要

抗菌肽 (AMPs) 作为对抗抗菌药物耐药性的有前途的药物而出现,为传统抗生素提供了一种替代方法。人工智能 (AI) 通过判别和生成方法彻底改变了 AMP 的发现。判别器通过预测关键肽性质(如活性和毒性)来帮助识别有前途的候选物,而生成器则学习肽的分布并能够对新型 AMP 候选物进行采样,无论是从头开始还是作为原型肽的类似物。此外,通过判别器引导过滤、仅正样本学习、潜在空间采样以及条件和优化生成,可以实现具有所需特性的 AMP 的受控生成。在这里,我们回顾了 AI 驱动的 AMP 发现的最新成就,重点介绍了最令人兴奋的方向。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验