Suppr超能文献

发现选择性杀死代谢休眠细菌的抗生素。

Discovery of antibiotics that selectively kill metabolically dormant bacteria.

机构信息

Program in Chemical Biology, Harvard University, Cambridge, MA 02138, USA; Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA.

Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Institute for Medical Engineering & Science, Department of Biological Engineering, and Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA.

出版信息

Cell Chem Biol. 2024 Apr 18;31(4):712-728.e9. doi: 10.1016/j.chembiol.2023.10.026. Epub 2023 Nov 28.

Abstract

There is a need to discover and develop non-toxic antibiotics that are effective against metabolically dormant bacteria, which underlie chronic infections and promote antibiotic resistance. Traditional antibiotic discovery has historically favored compounds effective against actively metabolizing cells, a property that is not predictive of efficacy in metabolically inactive contexts. Here, we combine a stationary-phase screening method with deep learning-powered virtual screens and toxicity filtering to discover compounds with lethality against metabolically dormant bacteria and favorable toxicity profiles. The most potent and structurally distinct compound without any obvious mechanistic liability was semapimod, an anti-inflammatory drug effective against stationary-phase E. coli and A. baumannii. Integrating microbiological assays, biochemical measurements, and single-cell microscopy, we show that semapimod selectively disrupts and permeabilizes the bacterial outer membrane by binding lipopolysaccharide. This work illustrates the value of harnessing non-traditional screening methods and deep learning models to identify non-toxic antibacterial compounds that are effective in infection-relevant contexts.

摘要

需要发现和开发对代谢休眠细菌有效的非毒性抗生素,这些细菌是慢性感染和促进抗生素耐药性的基础。传统的抗生素发现历史上倾向于选择对代谢活跃的细胞有效的化合物,而这种特性并不能预测在代谢不活跃的情况下的疗效。在这里,我们将停滞期筛选方法与深度学习驱动的虚拟筛选和毒性过滤相结合,以发现对代谢休眠细菌具有致死性和良好毒性特征的化合物。最有效且结构独特、没有明显机制缺陷的化合物是 semapimod,一种针对停滞期大肠杆菌和鲍曼不动杆菌的抗炎药物。通过整合微生物学测定、生化测量和单细胞显微镜,我们表明 semapimod 通过结合脂多糖选择性地破坏和渗透细菌的外膜。这项工作说明了利用非传统筛选方法和深度学习模型来识别在感染相关环境中有效的非毒性抗菌化合物的价值。

相似文献

1
Discovery of antibiotics that selectively kill metabolically dormant bacteria.
Cell Chem Biol. 2024 Apr 18;31(4):712-728.e9. doi: 10.1016/j.chembiol.2023.10.026. Epub 2023 Nov 28.
2
Antibiotic discovery with artificial intelligence for the treatment of infections.
mSystems. 2024 Jun 18;9(6):e0032524. doi: 10.1128/msystems.00325-24. Epub 2024 May 3.
4
Mechanism of Action of Isopropoxy Benzene Guanidine against Multidrug-Resistant Pathogens.
Microbiol Spectr. 2023 Feb 14;11(1):e0346922. doi: 10.1128/spectrum.03469-22. Epub 2022 Dec 8.
5
7
Leveraging Marine Natural Products as a Platform to Tackle Bacterial Resistance and Persistence.
Acc Chem Res. 2021 Apr 20;54(8):1866-1877. doi: 10.1021/acs.accounts.1c00007. Epub 2021 Mar 18.
8
Fast bacterial growth reduces antibiotic accumulation and efficacy.
Elife. 2022 Jun 7;11:e74062. doi: 10.7554/eLife.74062.
9
Membrane-active macromolecules kill antibiotic-tolerant bacteria and potentiate antibiotics towards Gram-negative bacteria.
PLoS One. 2017 Aug 24;12(8):e0183263. doi: 10.1371/journal.pone.0183263. eCollection 2017.
10
Discovery of GuaB inhibitors with efficacy against infection.
mBio. 2024 Oct 16;15(10):e0089724. doi: 10.1128/mbio.00897-24. Epub 2024 Aug 29.

引用本文的文献

2
A rational approach to discovering new persister control agents.
Antimicrob Agents Chemother. 2025 Sep 3;69(9):e0181424. doi: 10.1128/aac.01814-24. Epub 2025 Jul 31.
3
Discovery and optimization of a guanylhydrazone-based small molecule to replace bFGF for cell culture applications.
Biochem Biophys Rep. 2025 Jul 21;43:102167. doi: 10.1016/j.bbrep.2025.102167. eCollection 2025 Sep.
4
Phase-Specific Antibiotic Resistance Mechanisms in an B Strain.
bioRxiv. 2025 Jul 1:2025.06.30.662419. doi: 10.1101/2025.06.30.662419.
6
Evidence-based drug discovery.
Future Med Chem. 2025 May;17(10):1093-1095. doi: 10.1080/17568919.2025.2479762. Epub 2025 Apr 18.
7
Antibacterial compounds against non-growing and intracellular bacteria.
NPJ Antimicrob Resist. 2025 Apr 11;3(1):25. doi: 10.1038/s44259-025-00097-0.
8
Recent advances in high-throughput screening methods for small molecule modulators in bacteria.
Curr Opin Chem Biol. 2025 Apr;85:102571. doi: 10.1016/j.cbpa.2025.102571. Epub 2025 Feb 14.
9
Metabolic engineering approaches for the biosynthesis of antibiotics.
Microb Cell Fact. 2025 Jan 31;24(1):35. doi: 10.1186/s12934-024-02628-2.
10
Machine learning for antimicrobial peptide identification and design.
Nat Rev Bioeng. 2024 May;2(5):392-407. doi: 10.1038/s44222-024-00152-x. Epub 2024 Feb 26.

本文引用的文献

1
Leveraging artificial intelligence in the fight against infectious diseases.
Science. 2023 Jul 14;381(6654):164-170. doi: 10.1126/science.adh1114. Epub 2023 Jul 13.
2
Discovering small-molecule senolytics with deep neural networks.
Nat Aging. 2023 Jun;3(6):734-750. doi: 10.1038/s43587-023-00415-z. Epub 2023 May 4.
5
Acriflavine, an Acridine Derivative for Biomedical Application: Current State of the Art.
J Med Chem. 2022 Sep 8;65(17):11415-11432. doi: 10.1021/acs.jmedchem.2c00573. Epub 2022 Aug 26.
8
Defining Levels of Automated Chemical Design.
J Med Chem. 2022 May 26;65(10):7073-7087. doi: 10.1021/acs.jmedchem.2c00334. Epub 2022 May 5.
9
Persister control by leveraging dormancy associated reduction of antibiotic efflux.
PLoS Pathog. 2021 Dec 10;17(12):e1010144. doi: 10.1371/journal.ppat.1010144. eCollection 2021 Dec.
10
The PRIDE database resources in 2022: a hub for mass spectrometry-based proteomics evidences.
Nucleic Acids Res. 2022 Jan 7;50(D1):D543-D552. doi: 10.1093/nar/gkab1038.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验