Suppr超能文献

在新合成数据集上训练的集成机器学习模型,对于使用可穿戴设备进行压力预测具有良好的泛化能力。

Ensemble machine learning model trained on a new synthesized dataset generalizes well for stress prediction using wearable devices.

作者信息

Vos Gideon, Trinh Kelly, Sarnyai Zoltan, Rahimi Azghadi Mostafa

机构信息

College of Science and Engineering, James Cook University, James Cook Dr, Townsville, 4811, QLD, Australia.

College of Public Health, Medical, and Vet Sciences, James Cook University, James Cook Dr, Townsville, 4811, QLD, Australia.

出版信息

J Biomed Inform. 2023 Dec;148:104556. doi: 10.1016/j.jbi.2023.104556. Epub 2023 Dec 2.

Abstract

INTRODUCTION

Advances in wearable sensor technology have enabled the collection of biomarkers that may correlate with levels of elevated stress. While significant research has been done in this domain, specifically in using machine learning to detect elevated levels of stress, the challenge of producing a machine learning model capable of generalizing well for use on new, unseen data remain. Acute stress response has both subjective, psychological and objectively measurable, biological components that can be expressed differently from person to person, further complicating the development of a generic stress measurement model. Another challenge is the lack of large, publicly available datasets labeled for stress response that can be used to develop robust machine learning models. In this paper, we first investigate the generalization ability of models built on datasets containing a small number of subjects, recorded in single study protocols. Next, we propose and evaluate methods combining these datasets into a single, large dataset to study the generalization capability of machine learning models built on larger datasets. Finally, we propose and evaluate the use of ensemble techniques by combining gradient boosting with an artificial neural network to measure predictive power on new, unseen data. In favor of reproducible research and to assist the community advance the field, we make all our experimental data and code publicly available through Github at https://github.com/xalentis/Stress. This paper's in-depth study of machine learning model generalization for stress detection provides an important foundation for the further study of stress response measurement using sensor biomarkers, recorded with wearable technologies.

METHODS

Sensor biomarker data from six public datasets were utilized in this study. Exploratory data analysis was performed to understand the physiological variance between study subjects, and the complexity it introduces in building machine learning models capable of detecting elevated levels of stress on new, unseen data. To test model generalization, we developed a gradient boosting model trained on one dataset (SWELL), and tested its predictive power on two datasets previously used in other studies (WESAD, NEURO). Next, we merged four small datasets, i.e. (SWELL, NEURO, WESAD, UBFC-Phys), to provide a combined total of 99 subjects, and applied feature engineering to generate additional features utilizing statistical summaries, with sliding windows of 25 s. We name this large dataset, StressData. In addition, we utilized random sampling on StressData combined with another dataset (EXAM) to build a larger training dataset consisting of 200 synthesized subjects, which we name SynthesizedStressData. Finally, we developed an ensemble model that combines our gradient boosting model with an artificial neural network, and tested it using Leave-One-Subject-Out (LOSO) validation, and on two additional, unseen publicly available stress biomarker datasets (WESAD and Toadstool).

RESULTS

Our results show that previous models built on datasets containing a small number (<50) of subjects, recorded in single study protocols, cannot generalize well to new, unseen datasets. Our presented methodology for generating a large, synthesized training dataset by utilizing random sampling to construct scenarios closely aligned with experimental conditions demonstrate significant benefits. When combined with feature-engineering and ensemble learning, our method delivers a robust stress measurement system capable of achieving 85% predictive accuracy on new, unseen validation data, achieving a 25% performance improvement over single models trained on small datasets. The resulting model can be used as both a classification or regression predictor for estimating the level of perceived stress, when applied on specific sensor biomarkers recorded using a wearable device, while further allowing researchers to construct large, varied datasets for training machine learning models that closely emulate their exact experimental conditions.

CONCLUSION

Models trained on small, single study protocol datasets do not generalize well for use on new, unseen data and lack statistical power. Machine learning models trained on a dataset containing a larger number of varied study subjects capture physiological variance better, resulting in more robust stress detection. Feature-engineering assists in capturing these physiological variance, and this is further improved by utilizing ensemble techniques by combining the predictive power of different machine learning models, each capable of learning unique signals contained within the data. While there is a general lack of large, labeled public datasets that can be utilized for training machine learning models capable of accurately measuring levels of acute stress, random sampling techniques can successfully be applied to construct larger, varied datasets from these smaller sample datasets, for building robust machine learning models.

摘要

引言

可穿戴传感器技术的进步使得能够收集与压力升高水平相关的生物标志物。虽然在这一领域已经开展了大量研究,特别是在使用机器学习来检测压力升高水平方面,但要构建一个能够很好地推广到新的、未见过的数据上的机器学习模型仍然面临挑战。急性应激反应具有主观的心理成分和客观可测量的生物成分,且这些成分在人与人之间的表现可能不同,这进一步增加了通用压力测量模型开发的复杂性。另一个挑战是缺乏大量可公开获取的、标注了压力反应的数据集,而这些数据集可用于开发强大的机器学习模型。在本文中,我们首先研究基于单个研究协议记录的、包含少量受试者的数据集构建的模型的泛化能力。接下来,我们提出并评估将这些数据集合并为一个大型数据集的方法,以研究基于更大数据集构建的机器学习模型的泛化能力。最后,我们提出并评估通过将梯度提升与人工神经网络相结合的集成技术在新的、未见过的数据上的预测能力。为了支持可重复研究并协助该领域的发展,我们通过Github(https://github.com/xalentis/Stress)公开提供所有实验数据和代码。本文对用于压力检测的机器学习模型泛化的深入研究为进一步研究使用可穿戴技术记录的传感器生物标志物进行压力反应测量奠定了重要基础。

方法

本研究使用了来自六个公共数据集的传感器生物标志物数据。进行探索性数据分析以了解研究对象之间的生理差异,以及这种差异在构建能够检测新的、未见过的数据上的压力升高水平的机器学习模型时所引入的复杂性。为了测试模型泛化能力,我们开发了一个在一个数据集(SWELL)上训练的梯度提升模型,并在其他研究中使用过的两个数据集(WESAD、NEURO)上测试其预测能力。接下来,我们合并了四个小数据集,即(SWELL、NEURO、WESAD、UBFC - Phys),总共提供99名受试者,并应用特征工程利用统计摘要生成额外特征,滑动窗口为25秒。我们将这个大型数据集命名为StressData。此外,我们对StressData与另一个数据集(EXAM)进行随机抽样,以构建一个由200个合成受试者组成的更大训练数据集,我们将其命名为SynthesizedStressData。最后,我们开发了一个将梯度提升模型与人工神经网络相结合的集成模型,并使用留一受试者法(LOSO)验证以及在另外两个未见过的公开可用压力生物标志物数据集(WESAD和Toadstool)上对其进行测试。

结果

我们的结果表明,之前基于单个研究协议记录的、包含少量(<50)受试者的数据集构建的模型不能很好地推广到新的、未见过的数据集。我们提出的通过利用随机抽样构建与实验条件紧密匹配的场景来生成大型合成训练数据集的方法显示出显著优势。当与特征工程和集成学习相结合时,我们的方法提供了一个强大的压力测量系统,能够在新的、未见过的验证数据上实现85%的预测准确率,比在小数据集上训练的单个模型性能提高了25%。当应用于使用可穿戴设备记录的特定传感器生物标志物时,所得模型既可以用作分类预测器也可以用作回归预测器来估计感知压力水平,同时还允许研究人员构建大型、多样的数据集来训练紧密模拟其确切实验条件的机器学习模型。

结论

在小型、单个研究协议数据集上训练的模型不能很好地推广到新的、未见过的数据,且缺乏统计效力。在包含大量不同研究对象的数据集上训练的机器学习模型能更好地捕捉生理差异,从而实现更强大的压力检测。特征工程有助于捕捉这些生理差异,通过结合不同机器学习模型的预测能力(每个模型都能够学习数据中包含的独特信号)的集成技术,这一点得到了进一步改善。虽然普遍缺乏可用于训练能够准确测量急性压力水平的机器学习模型的大型、标注了的公共数据集,但随机抽样技术可以成功应用于从这些较小的样本数据集构建更大、多样的数据集,以构建强大的机器学习模型。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验