Suppr超能文献

机器学习和深度学习模型在毒性预测中的应用综述。

Review of machine learning and deep learning models for toxicity prediction.

机构信息

National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA.

出版信息

Exp Biol Med (Maywood). 2023 Nov;248(21):1952-1973. doi: 10.1177/15353702231209421. Epub 2023 Dec 6.

Abstract

The ever-increasing number of chemicals has raised public concerns due to their adverse effects on human health and the environment. To protect public health and the environment, it is critical to assess the toxicity of these chemicals. Traditional and toxicity assays are complicated, costly, and time-consuming and may face ethical issues. These constraints raise the need for alternative methods for assessing the toxicity of chemicals. Recently, due to the advancement of machine learning algorithms and the increase in computational power, many toxicity prediction models have been developed using various machine learning and deep learning algorithms such as support vector machine, random forest, -nearest neighbors, ensemble learning, and deep neural network. This review summarizes the machine learning- and deep learning-based toxicity prediction models developed in recent years. Support vector machine and random forest are the most popular machine learning algorithms, and hepatotoxicity, cardiotoxicity, and carcinogenicity are the frequently modeled toxicity endpoints in predictive toxicology. It is known that datasets impact model performance. The quality of datasets used in the development of toxicity prediction models using machine learning and deep learning is vital to the performance of the developed models. The different toxicity assignments for the same chemicals among different datasets of the same type of toxicity have been observed, indicating benchmarking datasets is needed for developing reliable toxicity prediction models using machine learning and deep learning algorithms. This review provides insights into current machine learning models in predictive toxicology, which are expected to promote the development and application of toxicity prediction models in the future.

摘要

由于化学物质对人类健康和环境的不良影响,其数量的不断增加引起了公众的关注。为了保护公众健康和环境,评估这些化学物质的毒性至关重要。传统的毒性检测方法既复杂又昂贵,且耗时较长,还可能面临伦理问题。这些限制因素促使人们需要寻找替代方法来评估化学物质的毒性。最近,由于机器学习算法的进步和计算能力的提高,许多使用各种机器学习和深度学习算法(如支持向量机、随机森林、K-最近邻、集成学习和深度神经网络)的毒性预测模型已经被开发出来。本综述总结了近年来基于机器学习和深度学习的毒性预测模型。支持向量机和随机森林是最受欢迎的机器学习算法,肝毒性、心脏毒性和致癌性是预测毒理学中经常建模的毒性终点。众所周知,数据集会影响模型的性能。在使用机器学习和深度学习开发毒性预测模型时,数据集的质量对于开发模型的性能至关重要。在同一类型毒性的不同数据集之间,对于相同化学物质的毒性赋值存在差异,这表明需要基准数据集来开发使用机器学习和深度学习算法的可靠毒性预测模型。本综述提供了对预测毒理学中当前机器学习模型的深入了解,预计将促进未来毒性预测模型的开发和应用。

相似文献

1
Review of machine learning and deep learning models for toxicity prediction.
Exp Biol Med (Maywood). 2023 Nov;248(21):1952-1973. doi: 10.1177/15353702231209421. Epub 2023 Dec 6.
2
Unlocking the potential of AI: Machine learning and deep learning models for predicting carcinogenicity of chemicals.
J Environ Sci Health C Toxicol Carcinog. 2025;43(1):23-50. doi: 10.1080/26896583.2024.2396731. Epub 2024 Sep 3.
3
Optimizing neural networks for medical data sets: A case study on neonatal apnea prediction.
Artif Intell Med. 2019 Jul;98:59-76. doi: 10.1016/j.artmed.2019.07.008. Epub 2019 Jul 25.
4
Applications of Machine Learning Methods in Drug Toxicity Prediction.
Curr Top Med Chem. 2018;18(12):987-997. doi: 10.2174/1568026618666180727152557.
5
A deep neural network-based approach for prediction of mutagenicity of compounds.
Environ Sci Pollut Res Int. 2021 Sep;28(34):47641-47650. doi: 10.1007/s11356-021-14028-9. Epub 2021 Apr 24.
6
Machine Learning Methods in Computational Toxicology.
Methods Mol Biol. 2018;1800:119-139. doi: 10.1007/978-1-4939-7899-1_5.
7
Bioactivity Comparison across Multiple Machine Learning Algorithms Using over 5000 Datasets for Drug Discovery.
Mol Pharm. 2021 Jan 4;18(1):403-415. doi: 10.1021/acs.molpharmaceut.0c01013. Epub 2020 Dec 16.
8
Machine learning algorithms for outcome prediction in (chemo)radiotherapy: An empirical comparison of classifiers.
Med Phys. 2018 Jul;45(7):3449-3459. doi: 10.1002/mp.12967. Epub 2018 Jun 13.
9
Prediction and Diagnosis of Breast Cancer Using Machine and Modern Deep Learning Models.
Asian Pac J Cancer Prev. 2024 Mar 1;25(3):1077-1085. doi: 10.31557/APJCP.2024.25.3.1077.
10
Artificial Intelligence-Based Toxicity Prediction of Environmental Chemicals: Future Directions for Chemical Management Applications.
Environ Sci Technol. 2022 Jun 21;56(12):7532-7543. doi: 10.1021/acs.est.1c07413. Epub 2022 Jun 6.

引用本文的文献

1
Artificial intelligence and machine learning in the development of vaccines and immunotherapeutics-yesterday, today, and tomorrow.
Front Artif Intell. 2025 Jul 18;8:1620572. doi: 10.3389/frai.2025.1620572. eCollection 2025.
3
Advances in Forensic Entomotoxicology for Decomposed Corpses: A Review.
Insects. 2025 Jul 21;16(7):744. doi: 10.3390/insects16070744.
4
Leveraging machine learning models in evaluating ADMET properties for drug discovery and development.
ADMET DMPK. 2025 Jun 7;13(3):2772. doi: 10.5599/admet.2772. eCollection 2025.
5
A refined set of RxNorm drug names for enhancing unstructured data analysis in drug safety surveillance.
Exp Biol Med (Maywood). 2025 May 2;250:10374. doi: 10.3389/ebm.2025.10374. eCollection 2025.
6
Developmental toxicity: artificial intelligence-powered assessments.
Trends Pharmacol Sci. 2025 Jun;46(6):486-502. doi: 10.1016/j.tips.2025.04.005. Epub 2025 May 15.
8
Value of Bioinformatics Models for Predicting Translational Control of Angiogenesis.
Circ Res. 2025 May 9;136(10):1147-1165. doi: 10.1161/CIRCRESAHA.125.325438. Epub 2025 May 8.
9
A Review of the Applications, Benefits, and Challenges of Generative AI for Sustainable Toxicology.
Curr Res Toxicol. 2025 Apr 21;8:100232. doi: 10.1016/j.crtox.2025.100232. eCollection 2025.

本文引用的文献

1
In silico prediction of hERG blockers using machine learning and deep learning approaches.
J Appl Toxicol. 2023 Oct;43(10):1462-1475. doi: 10.1002/jat.4477. Epub 2023 May 6.
2
Graph attention convolutional neural network model for chemical poisoning of honey bees' prediction.
Sci Bull (Beijing). 2020 Jul 30;65(14):1184-1191. doi: 10.1016/j.scib.2020.04.006. Epub 2020 Apr 3.
3
Prediction of drug-induced liver injury and cardiotoxicity using chemical structure and in vitro assay data.
Toxicol Appl Pharmacol. 2022 Nov 1;454:116250. doi: 10.1016/j.taap.2022.116250. Epub 2022 Sep 20.
4
Modeling and insights into the structural basis of chemical acute aquatic toxicity.
Ecotoxicol Environ Saf. 2022 Sep 1;242:113940. doi: 10.1016/j.ecoenv.2022.113940. Epub 2022 Aug 3.
6
The development and application of models for drug induced liver injury.
RSC Adv. 2018 Feb 20;8(15):8101-8111. doi: 10.1039/c7ra12957b. eCollection 2018 Feb 19.
7
Chemical toxicity prediction based on semi-supervised learning and graph convolutional neural network.
J Cheminform. 2021 Nov 27;13(1):93. doi: 10.1186/s13321-021-00570-8.
8
Predicting Drug-Induced Liver Injury Using Machine Learning on a Diverse Set of Predictors.
Front Pharmacol. 2021 Aug 18;12:648805. doi: 10.3389/fphar.2021.648805. eCollection 2021.
10
CATMoS: Collaborative Acute Toxicity Modeling Suite.
Environ Health Perspect. 2021 Apr;129(4):47013. doi: 10.1289/EHP8495. Epub 2021 Apr 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验