Suppr超能文献

多组学风险评分可预测炎症性肠病的诊断。

Poly-omic risk scores predict inflammatory bowel disease diagnosis.

机构信息

Interdisciplinary Quantitative Biology PhD Program, University of Colorado, Boulder, Colorado, USA.

Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Colorado, USA.

出版信息

mSystems. 2024 Jan 23;9(1):e0067723. doi: 10.1128/msystems.00677-23. Epub 2023 Dec 14.

Abstract

Inflammatory bowel disease (IBD) is characterized by complex etiology and a disrupted colonic ecosystem. We provide a framework for the analysis of multi-omic data, which we apply to study the gut ecosystem in IBD. Specifically, we train and validate models using data on the metagenome, metatranscriptome, virome, and metabolome from the Human Microbiome Project 2 IBD multi-omic database, with 1,785 repeated samples from 130 individuals (103 cases and 27 controls). After splitting the participants into training and testing groups, we used mixed-effects least absolute shrinkage and selection operator regression to select features for each omic. These features, with demographic covariates, were used to generate separate single-omic prediction scores. All four single-omic scores were then combined into a final regression to assess the relative importance of the individual omics and the predictive benefits when considered together. We identified several species, pathways, and metabolites known to be associated with IBD risk, and we explored the connections between data sets. Individually, metabolomic and viromic scores were more predictive than metagenomics or metatranscriptomics, and when all four scores were combined, we predicted disease diagnosis with a Nagelkerke's of 0.46 and an area under the curve of 0.80 (95% confidence interval: 0.63, 0.98). Our work supports that some single-omic models for complex traits are more predictive than others, that incorporating multiple omic data sets may improve prediction, and that each omic data type provides a combination of unique and redundant information. This modeling framework can be extended to other complex traits and multi-omic data sets.IMPORTANCEComplex traits are characterized by many biological and environmental factors, such that multi-omic data sets are well-positioned to help us understand their underlying etiologies. We applied a prediction framework across multiple omics (metagenomics, metatranscriptomics, metabolomics, and viromics) from the gut ecosystem to predict inflammatory bowel disease (IBD) diagnosis. The predicted scores from our models highlighted key features and allowed us to compare the relative utility of each omic data set in single-omic versus multi-omic models. Our results emphasized the importance of metabolomics and viromics over metagenomics and metatranscriptomics for predicting IBD status. The greater predictive capability of metabolomics and viromics is likely because these omics serve as markers of lifestyle factors such as diet. This study provides a modeling framework for multi-omic data, and our results show the utility of combining multiple omic data types to disentangle complex disease etiologies and biological signatures.

摘要

炎症性肠病(IBD)的病因复杂,结肠生态系统紊乱。我们提供了一个分析多组学数据的框架,并应用于研究 IBD 中的肠道生态系统。具体来说,我们使用来自人类微生物组计划 2 IBD 多组学数据库的宏基因组、宏转录组、病毒组和代谢组学数据来训练和验证模型,该数据库包含 130 名个体(103 例病例和 27 例对照)的 1785 个重复样本。将参与者分为训练组和测试组后,我们使用混合效应最小绝对收缩和选择算子回归(LASSO)为每个组学选择特征。这些特征与人口统计学协变量一起,用于生成单独的单组学预测评分。然后,将所有四个单组学评分组合成一个最终回归,以评估各个组学的相对重要性以及同时考虑时的预测益处。我们确定了一些与 IBD 风险相关的已知物种、途径和代谢物,并探讨了数据集之间的联系。单独来看,代谢组学和病毒组学评分比宏基因组学或宏转录组学更具预测性,当将这四个评分结合在一起时,我们用 Nagelkerke 的 0.46 和曲线下面积 0.80(95%置信区间:0.63,0.98)来预测疾病诊断。我们的工作表明,某些用于复杂特征的单组学模型比其他模型更具预测性,整合多个组学数据集可能会提高预测能力,并且每个组学数据类型都提供了独特和冗余信息的组合。该建模框架可以扩展到其他复杂特征和多组学数据集。

意义:复杂特征的特点是存在许多生物学和环境因素,因此多组学数据集非常适合帮助我们了解其潜在病因。我们应用了一种预测框架,通过对肠道生态系统中的多个组学(宏基因组学、宏转录组学、代谢组学和病毒组学)进行分析,以预测炎症性肠病(IBD)的诊断。我们的模型的预测评分突出了关键特征,并使我们能够比较单组学和多组学模型中每个组学数据集的相对效用。我们的结果强调了代谢组学和病毒组学比宏基因组学和宏转录组学在预测 IBD 状态方面的重要性。代谢组学和病毒组学的预测能力更强,可能是因为这些组学是饮食等生活方式因素的标志物。这项研究提供了一个多组学数据的建模框架,我们的结果表明,结合多种组学数据类型以分解复杂的疾病病因和生物学特征是很有用的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e51/10805030/8251e1c93d38/msystems.00677-23.f001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验