Suppr超能文献

通过表观遗传重编程实现衰老的机制、途径和策略。

Mechanisms, pathways and strategies for rejuvenation through epigenetic reprogramming.

机构信息

Department of Obstetrics & Gynecology, Stanford School of Medicine, Stanford University, Stanford, CA, USA.

Institute for Stem Cell Biology and Regenerative Medicine, Stanford School of Medicine, Stanford, CA, USA.

出版信息

Nat Aging. 2024 Jan;4(1):14-26. doi: 10.1038/s43587-023-00539-2. Epub 2023 Dec 15.

Abstract

Over the past decade, there has been a dramatic increase in efforts to ameliorate aging and the diseases it causes, with transient expression of nuclear reprogramming factors recently emerging as an intriguing approach. Expression of these factors, either systemically or in a tissue-specific manner, has been shown to combat age-related deterioration in mouse and human model systems at the cellular, tissue and organismal level. Here we discuss the current state of epigenetic rejuvenation strategies via partial reprogramming in both mouse and human models. For each classical reprogramming factor, we provide a brief description of its contribution to reprogramming and discuss additional factors or chemical strategies. We discuss what is known regarding chromatin remodeling and the molecular dynamics underlying rejuvenation, and, finally, we consider strategies to improve the practical uses of epigenetic reprogramming to treat aging and age-related diseases, focusing on the open questions and remaining challenges in this emerging field.

摘要

在过去的十年中,人们在改善衰老及其引发的疾病方面做出了巨大的努力,其中瞬时表达核重编程因子最近成为一种引人关注的方法。这些因子的表达,无论是全身性的还是组织特异性的,都已被证明可以在细胞、组织和机体水平上对抗与年龄相关的小鼠和人类模型系统的恶化。在这里,我们讨论了通过在小鼠和人类模型中部分重编程实现表观遗传再年轻化的当前策略。对于每个经典的重编程因子,我们简要描述了其对重编程的贡献,并讨论了其他因子或化学策略。我们讨论了关于染色质重塑和再年轻化的分子动力学的已知内容,最后,我们考虑了改善表观遗传重编程在治疗衰老和与年龄相关疾病中的实际应用的策略,重点关注这一新兴领域中的悬而未决的问题和剩余挑战。

相似文献

1
Mechanisms, pathways and strategies for rejuvenation through epigenetic reprogramming.
Nat Aging. 2024 Jan;4(1):14-26. doi: 10.1038/s43587-023-00539-2. Epub 2023 Dec 15.
2
Mechanisms of cellular rejuvenation.
FEBS Lett. 2019 Dec;593(23):3381-3392. doi: 10.1002/1873-3468.13483. Epub 2019 Jun 24.
3
Cellular reprogramming and epigenetic rejuvenation.
Clin Epigenetics. 2021 Sep 6;13(1):170. doi: 10.1186/s13148-021-01158-7.
4
Unveiling epigenetic regulation in cancer, aging, and rejuvenation with in vivo reprogramming technology.
Cancer Sci. 2018 Sep;109(9):2641-2650. doi: 10.1111/cas.13731. Epub 2018 Aug 15.
5
Epigenetic rejuvenation by partial reprogramming.
Bioessays. 2023 Apr;45(4):e2200208. doi: 10.1002/bies.202200208. Epub 2023 Mar 4.
6
Age reprogramming: cell rejuvenation by partial reprogramming.
Development. 2022 Nov 15;149(22). doi: 10.1242/dev.200755. Epub 2022 Nov 16.
7
Aging and reprogramming: a two-way street.
Curr Opin Cell Biol. 2012 Dec;24(6):744-56. doi: 10.1016/j.ceb.2012.10.004. Epub 2012 Nov 9.
8
Rejuvenation by Partial Reprogramming of the Epigenome.
Rejuvenation Res. 2017 Apr;20(2):146-150. doi: 10.1089/rej.2017.1958.
9
Age reprogramming and epigenetic rejuvenation.
Epigenetics Chromatin. 2018 Dec 20;11(1):73. doi: 10.1186/s13072-018-0244-7.
10
Partial reprogramming induces a steady decline in epigenetic age before loss of somatic identity.
Aging Cell. 2019 Feb;18(1):e12877. doi: 10.1111/acel.12877. Epub 2018 Nov 18.

引用本文的文献

1
A Biophysics of Epigenetic Rejuvenation.
Cells. 2025 Aug 13;14(16):1249. doi: 10.3390/cells14161249.
2
Mathematical models and computational approaches in CAR-T therapeutics.
Front Immunol. 2025 Aug 1;16:1581210. doi: 10.3389/fimmu.2025.1581210. eCollection 2025.
3
Neural Stem Cell-Derived Extracellular Vesicles for Advanced Neural Repair.
J Neurochem. 2025 Aug;169(8):e70170. doi: 10.1111/jnc.70170.
4
Tissue nanotransfection and cellular reprogramming in regenerative medicine and antimicrobial dynamics.
Front Bioeng Biotechnol. 2025 Jun 18;13:1558735. doi: 10.3389/fbioe.2025.1558735. eCollection 2025.
5
A review of regenerative medicine and tissue engineering with a focus on wound healing and anti-aging.
Front Surg. 2025 Jun 5;12:1504563. doi: 10.3389/fsurg.2025.1504563. eCollection 2025.
8
9
From geroscience to precision geromedicine: Understanding and managing aging.
Cell. 2025 Apr 17;188(8):2043-2062. doi: 10.1016/j.cell.2025.03.011.
10
Promoting health and survival through lowered body temperature.
Nat Aging. 2025 May;5(5):740-749. doi: 10.1038/s43587-025-00850-0. Epub 2025 Apr 9.

本文引用的文献

2
In vivo partial reprogramming alters age-associated molecular changes during physiological aging in mice.
Nat Aging. 2022 Mar;2(3):243-253. doi: 10.1038/s43587-022-00183-2. Epub 2022 Mar 7.
4
Highly efficient and rapid generation of human pluripotent stem cells by chemical reprogramming.
Cell Stem Cell. 2023 Apr 6;30(4):450-459.e9. doi: 10.1016/j.stem.2023.02.008. Epub 2023 Mar 20.
5
Kupffer-cell-derived IL-6 is repurposed for hepatocyte dedifferentiation via activating progenitor genes from injury-specific enhancers.
Cell Stem Cell. 2023 Mar 2;30(3):283-299.e9. doi: 10.1016/j.stem.2023.01.009. Epub 2023 Feb 13.
6
Loss of epigenetic information as a cause of mammalian aging.
Cell. 2023 Jan 19;186(2):305-326.e27. doi: 10.1016/j.cell.2022.12.027. Epub 2023 Jan 12.
7
Hallmarks of aging: An expanding universe.
Cell. 2023 Jan 19;186(2):243-278. doi: 10.1016/j.cell.2022.11.001. Epub 2023 Jan 3.
8
Deciphering the roadmap of in vivo reprogramming toward pluripotency.
Stem Cell Reports. 2022 Nov 8;17(11):2501-2517. doi: 10.1016/j.stemcr.2022.09.009. Epub 2022 Oct 20.
10
Diverse partial reprogramming strategies restore youthful gene expression and transiently suppress cell identity.
Cell Syst. 2022 Jul 20;13(7):574-587.e11. doi: 10.1016/j.cels.2022.05.002. Epub 2022 Jun 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验