Suppr超能文献

加速蛋白质-配体相互作用的多重分析:高通量基于平板的反应性半胱氨酸分析,只需少量投入。

Accelerating multiplexed profiling of protein-ligand interactions: High-throughput plate-based reactive cysteine profiling with minimal input.

机构信息

Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA.

Biogen, Cambridge, MA 02142, USA.

出版信息

Cell Chem Biol. 2024 Mar 21;31(3):565-576.e4. doi: 10.1016/j.chembiol.2023.11.015. Epub 2023 Dec 19.

Abstract

Chemoproteomics has made significant progress in investigating small-molecule-protein interactions. However, the proteome-wide profiling of cysteine ligandability remains challenging to adapt for high-throughput applications, primarily due to a lack of platforms capable of achieving the desired depth using low input in 96- or 384-well plates. Here, we introduce a revamped, plate-based platform which enables routine interrogation of either ∼18,000 or ∼24,000 reactive cysteines based on starting amounts of 10 or 20 μg, respectively. This represents a 5-10X reduction in input and 2-3X improved coverage. We applied the platform to screen 192 electrophiles in the native HEK293T proteome, mapping the ligandability of 38,450 reactive cysteines from 8,274 human proteins. We further applied the platform to characterize new cellular targets of established drugs, uncovering that ARS-1620, a KRAS inhibitor, binds to and inhibits an off-target adenosine kinase ADK. The platform represents a major step forward to high-throughput proteome-wide evaluation of reactive cysteines.

摘要

化学生物学在研究小分子-蛋白质相互作用方面取得了重大进展。然而,由于缺乏能够在 96 孔或 384 孔板中以低输入量实现所需深度的平台,因此对蛋白质组范围内半胱氨酸配体能力的全面分析仍然具有挑战性。在这里,我们引入了一种经过改进的基于平板的平台,该平台能够根据起始量为 10 或 20μg 分别常规检测约 18000 或约 24000 个反应性半胱氨酸。这代表输入量减少了 5-10 倍,覆盖率提高了 2-3 倍。我们将该平台应用于筛选天然 HEK293T 蛋白质组中的 192 种亲电试剂,绘制了 8274 个人类蛋白质中 38450 个反应性半胱氨酸的配体能力。我们进一步将该平台应用于表征已建立药物的新细胞靶标,发现 KRAS 抑制剂 ARS-1620 与非靶标腺苷激酶 ADK 结合并抑制其活性。该平台代表了在高通量蛋白质组范围内评估反应性半胱氨酸方面的重大进展。

相似文献

1
Accelerating multiplexed profiling of protein-ligand interactions: High-throughput plate-based reactive cysteine profiling with minimal input.
Cell Chem Biol. 2024 Mar 21;31(3):565-576.e4. doi: 10.1016/j.chembiol.2023.11.015. Epub 2023 Dec 19.
2
Robust proteome profiling of cysteine-reactive fragments using label-free chemoproteomics.
Nat Commun. 2025 Jan 2;16(1):73. doi: 10.1038/s41467-024-55057-5.
3
Reimagining high-throughput profiling of reactive cysteines for cell-based screening of large electrophile libraries.
Nat Biotechnol. 2021 May;39(5):630-641. doi: 10.1038/s41587-020-00778-3. Epub 2021 Jan 4.
4
Applications of Reactive Cysteine Profiling.
Curr Top Microbiol Immunol. 2019;420:375-417. doi: 10.1007/82_2018_120.
5
Proteome-wide structural analysis identifies warhead- and coverage-specific biases in cysteine-focused chemoproteomics.
Cell Chem Biol. 2023 Jul 20;30(7):828-838.e4. doi: 10.1016/j.chembiol.2023.06.021. Epub 2023 Jul 13.
6
Multiplexed proteomic profiling of cysteine reactivity and ligandability in human T cells.
STAR Protoc. 2021 Apr 8;2(2):100458. doi: 10.1016/j.xpro.2021.100458. eCollection 2021 Jun 18.
7
AzidoTMT Enables Direct Enrichment and Highly Multiplexed Quantitation of Proteome-Wide Functional Residues.
J Proteome Res. 2023 Jul 7;22(7):2218-2231. doi: 10.1021/acs.jproteome.2c00703. Epub 2023 Jun 7.
8
Proteome-wide covalent ligand discovery in native biological systems.
Nature. 2016 Jun 23;534(7608):570-4. doi: 10.1038/nature18002. Epub 2016 Jun 15.
9
SP3-FAIMS-Enabled High-Throughput Quantitative Profiling of the Cysteinome.
Curr Protoc. 2022 Jul;2(7):e492. doi: 10.1002/cpz1.492.
10
CysDB: a human cysteine database based on experimental quantitative chemoproteomics.
Cell Chem Biol. 2023 Jun 15;30(6):683-698.e3. doi: 10.1016/j.chembiol.2023.04.004. Epub 2023 Apr 28.

引用本文的文献

2
COOKIE-Pro: Covalent Inhibitor Binding Kinetics Profiling on the Proteome Scale.
bioRxiv. 2025 Jun 22:2025.06.19.660637. doi: 10.1101/2025.06.19.660637.
4
TMT-Based Multiplexed (Chemo)Proteomics on the Orbitrap Astral Mass Spectrometer.
Mol Cell Proteomics. 2025 May;24(5):100968. doi: 10.1016/j.mcpro.2025.100968. Epub 2025 Apr 8.
7
Robust proteome profiling of cysteine-reactive fragments using label-free chemoproteomics.
Nat Commun. 2025 Jan 2;16(1):73. doi: 10.1038/s41467-024-55057-5.
8
Covalent Proximity Inducers.
Chem Rev. 2025 Jan 8;125(1):326-368. doi: 10.1021/acs.chemrev.4c00570. Epub 2024 Dec 18.
9
Chemical tools to expand the ligandable proteome: Diversity-oriented synthesis-based photoreactive stereoprobes.
Cell Chem Biol. 2024 Dec 19;31(12):2138-2155.e32. doi: 10.1016/j.chembiol.2024.10.005. Epub 2024 Nov 14.
10
Chem(Pro)2: the atlas of chemoproteomic probes labelling human proteins.
Nucleic Acids Res. 2025 Jan 6;53(D1):D1651-D1662. doi: 10.1093/nar/gkae943.

本文引用的文献

1
Proteome-wide structural analysis identifies warhead- and coverage-specific biases in cysteine-focused chemoproteomics.
Cell Chem Biol. 2023 Jul 20;30(7):828-838.e4. doi: 10.1016/j.chembiol.2023.06.021. Epub 2023 Jul 13.
2
Systematic identification of anticancer drug targets reveals a nucleus-to-mitochondria ROS-sensing pathway.
Cell. 2023 May 25;186(11):2361-2379.e25. doi: 10.1016/j.cell.2023.04.026. Epub 2023 May 15.
3
CysDB: a human cysteine database based on experimental quantitative chemoproteomics.
Cell Chem Biol. 2023 Jun 15;30(6):683-698.e3. doi: 10.1016/j.chembiol.2023.04.004. Epub 2023 Apr 28.
4
Proteomic discovery of chemical probes that perturb protein complexes in human cells.
Mol Cell. 2023 May 18;83(10):1725-1742.e12. doi: 10.1016/j.molcel.2023.03.026. Epub 2023 Apr 20.
7
Identification of oxidative stress-related genes and potential mechanisms in atherosclerosis.
Front Genet. 2023 Jan 4;13:998954. doi: 10.3389/fgene.2022.998954. eCollection 2022.
8
A proteome-wide atlas of drug mechanism of action.
Nat Biotechnol. 2023 Jun;41(6):845-857. doi: 10.1038/s41587-022-01539-0. Epub 2023 Jan 2.
9
Decreased propionyl-CoA metabolism facilitates metabolic reprogramming and promotes hepatocellular carcinoma.
J Hepatol. 2023 Mar;78(3):627-642. doi: 10.1016/j.jhep.2022.11.017. Epub 2022 Dec 1.
10
Chemoproteomic profiling to identify activity changes and functional inhibitors of DNA-binding proteins.
Cell Chem Biol. 2022 Nov 17;29(11):1639-1648.e4. doi: 10.1016/j.chembiol.2022.10.008. Epub 2022 Nov 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验