Suppr超能文献

dsRNA 世界的竞争格局。

The competitive landscape of the dsRNA world.

机构信息

Department of Biochemistry, Purdue University, West Lafayette, IN, USA.

Department of Biochemistry, University of Utah, Salt Lake City, UT, USA.

出版信息

Mol Cell. 2024 Jan 4;84(1):107-119. doi: 10.1016/j.molcel.2023.11.033. Epub 2023 Dec 19.

Abstract

The ability to sense and respond to infection is essential for life. Viral infection produces double-stranded RNAs (dsRNAs) that are sensed by proteins that recognize the structure of dsRNA. This structure-based recognition of viral dsRNA allows dsRNA sensors to recognize infection by many viruses, but it comes at a cost-the dsRNA sensors cannot always distinguish between "self" and "nonself" dsRNAs. "Self" RNAs often contain dsRNA regions, and not surprisingly, mechanisms have evolved to prevent aberrant activation of dsRNA sensors by "self" RNA. Here, we review current knowledge about the life of endogenous dsRNAs in mammals-the biosynthesis and processing of dsRNAs, the proteins they encounter, and their ultimate degradation. We highlight mechanisms that evolved to prevent aberrant dsRNA sensor activation and the importance of competition in the regulation of dsRNA sensors and other dsRNA-binding proteins.

摘要

感知和应对感染的能力对生命至关重要。病毒感染会产生双链 RNA(dsRNA),dsRNA 被识别 dsRNA 结构的蛋白质所感知。这种基于结构的 dsRNA 识别使 dsRNA 传感器能够识别多种病毒的感染,但这也带来了代价——dsRNA 传感器不能总是区分“自身”和“非自身”dsRNA。“自身”RNA 通常含有 dsRNA 区域,毫不奇怪,已经进化出一些机制来防止 dsRNA 传感器被“自身”RNA 异常激活。在这里,我们综述了关于哺乳动物内源性 dsRNA 的生命的最新知识——dsRNA 的生物合成和加工、它们所遇到的蛋白质以及它们的最终降解。我们强调了进化出的防止 dsRNA 传感器异常激活的机制,以及竞争在 dsRNA 传感器和其他 dsRNA 结合蛋白的调控中的重要性。

相似文献

1
The competitive landscape of the dsRNA world.
Mol Cell. 2024 Jan 4;84(1):107-119. doi: 10.1016/j.molcel.2023.11.033. Epub 2023 Dec 19.
3
Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses.
Nature. 2006 May 4;441(7089):101-5. doi: 10.1038/nature04734. Epub 2006 Apr 9.
4
Double-Stranded RNA Sensors and Modulators in Innate Immunity.
Annu Rev Immunol. 2019 Apr 26;37:349-375. doi: 10.1146/annurev-immunol-042718-041356. Epub 2019 Jan 23.
5
Evolution of the DEAD box helicase family in chicken: chickens have no DHX9 ortholog.
Microbiol Immunol. 2015 Oct;59(10):633-40. doi: 10.1111/1348-0421.12322.
6
Mechanistic modeling explains the dsRNA length-dependent activation of the RIG-I mediated immune response.
J Theor Biol. 2020 Sep 7;500:110336. doi: 10.1016/j.jtbi.2020.110336. Epub 2020 May 21.
8
Multifaceted roles of RNA editing enzyme ADAR1 in innate immunity.
RNA. 2024 Apr 16;30(5):500-511. doi: 10.1261/rna.079953.124.
9
Efficient Dicer processing of virus-derived double-stranded RNAs and its modulation by RIG-I-like receptor LGP2.
PLoS Pathog. 2021 Aug 3;17(8):e1009790. doi: 10.1371/journal.ppat.1009790. eCollection 2021 Aug.

引用本文的文献

4
Integrator loss leads to dsRNA formation that triggers the integrated stress response.
Cell. 2025 Jun 12;188(12):3184-3201.e21. doi: 10.1016/j.cell.2025.03.025. Epub 2025 Apr 14.
5
Astrocytic RNA editing regulates the host immune response to alpha-synuclein.
Sci Adv. 2025 Apr 11;11(15):eadp8504. doi: 10.1126/sciadv.adp8504.
7
PACT prevents aberrant activation of PKR by endogenous dsRNA without sequestration.
Nat Commun. 2025 Apr 8;16(1):3325. doi: 10.1038/s41467-025-58433-x.
10
Spontaneous base flipping helps drive Nsp15's preferences in double stranded RNA substrates.
Nat Commun. 2025 Jan 4;16(1):391. doi: 10.1038/s41467-024-55682-0.

本文引用的文献

1
Induction of Viral Mimicry Upon Loss of DHX9 and ADAR1 in Breast Cancer Cells.
Cancer Res Commun. 2024 Apr 4;4(4):986-1003. doi: 10.1158/2767-9764.CRC-23-0488.
2
XRN1 deletion induces PKR-dependent cell lethality in interferon-activated cancer cells.
Cell Rep. 2024 Feb 27;43(2):113600. doi: 10.1016/j.celrep.2023.113600. Epub 2024 Jan 22.
3
Retroelement decay by the exonuclease XRN1 is a viral mimicry dependency in cancer.
Cell Rep. 2024 Feb 27;43(2):113684. doi: 10.1016/j.celrep.2024.113684. Epub 2024 Jan 22.
4
Long 3'UTRs predispose neurons to inflammation by promoting immunostimulatory double-stranded RNA formation.
Sci Immunol. 2023 Oct 27;8(88):eadg2979. doi: 10.1126/sciimmunol.adg2979. Epub 2023 Oct 20.
5
ADAR1p150 prevents MDA5 and PKR activation via distinct mechanisms to avert fatal autoinflammation.
Mol Cell. 2023 Nov 2;83(21):3869-3884.e7. doi: 10.1016/j.molcel.2023.09.018. Epub 2023 Oct 4.
6
Novel insights into double-stranded RNA-mediated immunopathology.
Nat Rev Immunol. 2024 Apr;24(4):235-249. doi: 10.1038/s41577-023-00940-3. Epub 2023 Sep 26.
7
Regulation and functions of non-mA mRNA modifications.
Nat Rev Mol Cell Biol. 2023 Oct;24(10):714-731. doi: 10.1038/s41580-023-00622-x. Epub 2023 Jun 27.
8
Structural insights into human co-transcriptional capping.
Mol Cell. 2023 Jul 20;83(14):2464-2477.e5. doi: 10.1016/j.molcel.2023.06.002. Epub 2023 Jun 26.
9
A 360° view of the inflammasome: Mechanisms of activation, cell death, and diseases.
Cell. 2023 May 25;186(11):2288-2312. doi: 10.1016/j.cell.2023.04.025.
10
The ADAR1 editome reveals drivers of editing-specificity for ADAR1-isoforms.
Nucleic Acids Res. 2023 May 22;51(9):4191-4207. doi: 10.1093/nar/gkad265.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验