Suppr超能文献

[自回归积分滑动平均模型在江西省流行性腮腺炎发病趋势预测与分析中的应用]

[Application of autoregressive integrated moving average model to predict and analyze the incidence trend of mumps in Jiangxi Province].

作者信息

Zhao Y Q, Shi J H, Xu F, Guo S C

机构信息

Jiangxi Provincial Center for Disease Control and Prevention, Nanchang 330029, China.

Sinovac Biotech Co., Ltd, Beijing 100085, China.

出版信息

Zhonghua Liu Xing Bing Xue Za Zhi. 2023 Dec 10;44(12):1911-1915. doi: 10.3760/cma.j.cn112338-20230529-00338.

Abstract

To predict and analyze the incidence trend of mumps using the Autoregressive integrated moving average model (ARIMA) in Jiangxi Province. The ARIMA was used to model the number of mumps cases per month from 2015 to 2019 in Jiangxi Province. The number of mumps cases in 12 months was predicted and was compared with the actual reported cases in 2020, 2021, and 2022, respectively. The optimal model was ARIMA (0,2,1)(1,2,0). The predicted number of cases was significantly higher than that reported in 2020, 2021 and 2022. The number of reported cases of mumps in 2020, 2021, and 2022 decreased by 54.02%, 63.40%, and 66.09% compared with the forecast. From 2020 to 2022, the reported incidence of mumps in Jiangxi Province was significantly lower than the predicted incidence. Considering that it was related to non-drug intervention measures and changes in immunization strategies, it was suggested to strengthen mumps surveillance further to better cope with the epidemic situation of mumps.

摘要

运用自回归积分滑动平均模型(ARIMA)预测和分析江西省腮腺炎的发病趋势。采用ARIMA对江西省2015年至2019年每月的腮腺炎病例数进行建模。预测了12个月的腮腺炎病例数,并分别与2020年、2021年和2022年实际报告的病例数进行比较。最优模型为ARIMA(0,2,1)(1,2,0)。预测的病例数显著高于2020年、2021年和2022年报告的病例数。2020年、2021年和2022年腮腺炎报告病例数与预测值相比分别下降了54.02%、63.40%和66.09%。2020年至2022年,江西省腮腺炎报告发病率显著低于预测发病率。考虑到这与非药物干预措施和免疫策略变化有关,建议进一步加强腮腺炎监测,以更好地应对腮腺炎疫情。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验