Suppr超能文献

高通量 PRIME 编辑筛选可鉴定人类基因组中的功能 DNA 变体。

High-throughput PRIME-editing screens identify functional DNA variants in the human genome.

机构信息

Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA.

Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, USA.

出版信息

Mol Cell. 2023 Dec 21;83(24):4633-4645.e9. doi: 10.1016/j.molcel.2023.11.021.

Abstract

Despite tremendous progress in detecting DNA variants associated with human disease, interpreting their functional impact in a high-throughput and single-base resolution manner remains challenging. Here, we develop a pooled prime-editing screen method, PRIME, that can be applied to characterize thousands of coding and non-coding variants in a single experiment with high reproducibility. To showcase its applications, we first identified essential nucleotides for a 716 bp MYC enhancer via PRIME-mediated single-base resolution analysis. Next, we applied PRIME to functionally characterize 1,304 genome-wide association study (GWAS)-identified non-coding variants associated with breast cancer and 3,699 variants from ClinVar. We discovered that 103 non-coding variants and 156 variants of uncertain significance are functional via affecting cell fitness. Collectively, we demonstrate that PRIME is capable of characterizing genetic variants at single-base resolution and scale, advancing accurate genome annotation for disease risk prediction, diagnosis, and therapeutic target identification.

摘要

尽管在检测与人类疾病相关的 DNA 变异方面取得了巨大进展,但以高通量和单碱基分辨率的方式解释它们的功能影响仍然具有挑战性。在这里,我们开发了一种 pooled prime-editing 筛选方法 PRIME,它可以在单个实验中以高重复性来表征数千个编码和非编码变体。为了展示其应用,我们首先通过 PRIME 介导的单碱基分辨率分析确定了 716 bp MYC 增强子的必需核苷酸。接下来,我们应用 PRIME 对与乳腺癌相关的 1304 个全基因组关联研究 (GWAS) 鉴定的非编码变体和来自 ClinVar 的 3699 个变体进行功能表征。我们发现,通过影响细胞适应性,103 个非编码变体和 156 个意义不明的变体是有功能的。总的来说,我们证明了 PRIME 能够以单碱基分辨率和规模来表征遗传变异,推进了疾病风险预测、诊断和治疗靶点识别的精确基因组注释。

相似文献

1
High-throughput PRIME-editing screens identify functional DNA variants in the human genome.
Mol Cell. 2023 Dec 21;83(24):4633-4645.e9. doi: 10.1016/j.molcel.2023.11.021.
2
High throughput PRIME editing screens identify functional DNA variants in the human genome.
bioRxiv. 2023 Jul 12:2023.07.12.548736. doi: 10.1101/2023.07.12.548736.
3
SpRY-mediated screens facilitate functional dissection of non-coding sequences at single-base resolution.
Cell Genom. 2024 Jul 10;4(7):100583. doi: 10.1016/j.xgen.2024.100583. Epub 2024 Jun 17.
4
High-throughput screening of human genetic variants by pooled prime editing.
Cell Genom. 2025 Apr 9;5(4):100814. doi: 10.1016/j.xgen.2025.100814. Epub 2025 Mar 21.
5
6
A Review on Advanced CRISPR-Based Genome-Editing Tools: Base Editing and Prime Editing.
Mol Biotechnol. 2023 Jun;65(6):849-860. doi: 10.1007/s12033-022-00639-1. Epub 2022 Dec 22.
7
Base editing sensor libraries for high-throughput engineering and functional analysis of cancer-associated single nucleotide variants.
Nat Biotechnol. 2022 Jun;40(6):862-873. doi: 10.1038/s41587-021-01172-3. Epub 2022 Feb 14.
9
Functional Genetic Variants Revealed by Massively Parallel Precise Genome Editing.
Cell. 2018 Oct 4;175(2):544-557.e16. doi: 10.1016/j.cell.2018.08.057. Epub 2018 Sep 20.

引用本文的文献

1
Genome Editing Breeding with CRISPR-Cas Nucleases, Base Editors, and Prime Editors.
Animals (Basel). 2025 Jul 22;15(15):2161. doi: 10.3390/ani15152161.
2
Emerging trends in prime editing for precision genome editing.
Exp Mol Med. 2025 Jul;57(7):1381-1391. doi: 10.1038/s12276-025-01463-8. Epub 2025 Jul 31.
3
Biosafety considerations triggered by genome-editing technologies.
Biosaf Health. 2025 May 13;7(3):141-151. doi: 10.1016/j.bsheal.2025.05.003. eCollection 2025 Jun.
5
Ultrasmall chemogenetic tags with group-transfer ligands.
bioRxiv. 2025 May 10:2025.05.10.653252. doi: 10.1101/2025.05.10.653252.
6
CRISPR screening approaches in breast cancer research.
Cancer Metastasis Rev. 2025 Jul 12;44(3):59. doi: 10.1007/s10555-025-10275-1.
9
Spatially Resolved Panoramic in vivo CRISPR Screen via Perturb-DBiT.
Res Sq. 2025 May 8:rs.3.rs-6481967. doi: 10.21203/rs.3.rs-6481967/v1.
10
Rewriting regulatory DNA to dissect and reprogram gene expression.
Cell. 2025 Apr 14. doi: 10.1016/j.cell.2025.03.034.

本文引用的文献

1
Prediction of efficiencies for diverse prime editing systems in multiple cell types.
Cell. 2023 May 11;186(10):2256-2272.e23. doi: 10.1016/j.cell.2023.03.034. Epub 2023 Apr 28.
2
Multimodal CRISPR perturbations of GWAS loci associated with coronary artery disease in vascular endothelial cells.
PLoS Genet. 2023 Mar 16;19(3):e1010680. doi: 10.1371/journal.pgen.1010680. eCollection 2023 Mar.
4
Prime editing for precise and highly versatile genome manipulation.
Nat Rev Genet. 2023 Mar;24(3):161-177. doi: 10.1038/s41576-022-00541-1. Epub 2022 Nov 7.
5
Annual report to the nation on the status of cancer, part 1: National cancer statistics.
Cancer. 2022 Dec 15;128(24):4251-4284. doi: 10.1002/cncr.34479. Epub 2022 Oct 27.
6
Homologous recombination-deficient mutation cluster in tumor suppressor identified by comprehensive analysis of cancer variants.
Proc Natl Acad Sci U S A. 2022 Sep 20;119(38):e2202727119. doi: 10.1073/pnas.2202727119. Epub 2022 Sep 13.
7
ColabFold: making protein folding accessible to all.
Nat Methods. 2022 Jun;19(6):679-682. doi: 10.1038/s41592-022-01488-1. Epub 2022 May 30.
9
Saturation variant interpretation using CRISPR prime editing.
Nat Biotechnol. 2022 Jun;40(6):885-895. doi: 10.1038/s41587-021-01201-1. Epub 2022 Feb 21.
10
Enhanced prime editing systems by manipulating cellular determinants of editing outcomes.
Cell. 2021 Oct 28;184(22):5635-5652.e29. doi: 10.1016/j.cell.2021.09.018. Epub 2021 Oct 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验