Marine Biotechnology Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China.
College of Marine Life Sciences & Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, China.
Appl Environ Microbiol. 2024 Jan 24;90(1):e0170423. doi: 10.1128/aem.01704-23. Epub 2024 Jan 3.
Catabolism of algal polysaccharides by marine bacteria is a significant process of marine carbon cycling. β1,3/1,4Mixed-linkage xylan (MLX) is a class of xylan in the ocean, widely present in the cell walls of red algae. However, the catabolic mechanism of MLX by marine bacteria remains elusive. Recently, we found that a marine Bacteroidetes strain, sp. Q13, is a specialist in degrading MLX, which secretes a novel MLX-specific xylanase. Here, the catabolic specialization of strain Q13 to MLX was studied by multiomics and biochemical analyses. Strain Q13 catabolizes MLX with a canonical starch utilization system (Sus), which is encoded by a single xylan utilization locus, XUL-Q13. In this system, the cell surface glycan-binding protein SGBP-B captures MLX specifically, contributing to the catabolic specificity. The xylanolytic enzyme system of strain Q13 is unique, and the enzymatic cascade dedicates the stepwise hydrolysis of the β1,3- and β1,4-linkages in MLX in the extracellular, periplasmic, and cytoplasmic spaces. Bioinformatics analysis and growth observation suggest that other marine Bacteroidetes strains harboring homologous MLX utilization loci also preferentially utilize MLX. These results reveal the catabolic specialization of MLX degradation by marine Bacteroidetes, leading to a better understanding of the degradation and recycling of MLX driven by marine bacteria.IMPORTANCERed algae contribute substantially to the primary production in marine ecosystems. The catabolism of red algal polysaccharides by marine bacteria is important for marine carbon cycling. Mixed-linkage β1,3/1,4-xylan (MLX, distinct from hetero-β1,4-xylans from terrestrial plants) is an abundant red algal polysaccharide, whose mechanism of catabolism by marine bacteria, however, remains largely unknown. This study reveals the catabolism of MLX by marine Bacteroidetes, promoting our understanding of the degradation and utilization of algal polysaccharides by marine bacteria. This study also sets a foundation for the biomass conversion of MLX.
海洋细菌对藻类多糖的分解代谢是海洋碳循环的重要过程。β1,3/1,4 混合链接木聚糖 (MLX) 是海洋中的一类木聚糖,广泛存在于红藻细胞壁中。然而,海洋细菌对 MLX 的分解代谢机制仍不清楚。最近,我们发现一种海洋拟杆菌菌株, sp. Q13,是专门降解 MLX 的专家,它分泌一种新型的 MLX 特异性木聚糖酶。在这里,通过多组学和生化分析研究了菌株 Q13 对 MLX 的分解代谢专业化。菌株 Q13 利用 MLX 具有典型的淀粉利用系统 (Sus),该系统由单个木聚糖利用基因座 XUL-Q13 编码。在这个系统中,细胞表面糖结合蛋白 SGBP-B 特异性地捕获 MLX,有助于分解代谢的特异性。菌株 Q13 的木聚糖酶系统是独特的,酶级联反应专门用于在细胞外、周质和细胞质空间中逐步水解 MLX 中的 β1,3-和 β1,4-键。生物信息学分析和生长观察表明,其他含有同源 MLX 利用基因座的海洋拟杆菌菌株也优先利用 MLX。这些结果揭示了海洋拟杆菌对 MLX 降解的分解代谢专业化,从而更好地理解了海洋细菌驱动的 MLX 降解和回收。
红藻对海洋生态系统的初级生产力有很大的贡献。海洋细菌对红藻多糖的分解代谢对海洋碳循环很重要。混合链接 β1,3/1,4-木聚糖 (MLX,与来自陆地植物的杂合-β1,4-木聚糖不同) 是一种丰富的红藻多糖,然而,海洋细菌对其分解代谢的机制在很大程度上仍然未知。本研究揭示了海洋拟杆菌对 MLX 的分解代谢,促进了我们对海洋细菌对藻类多糖的降解和利用的理解。本研究还为 MLX 的生物质转化奠定了基础。