Suppr超能文献

基于 DIA 的蛋白质组学数据的获取与分析:2023 年全面综述。

Acquisition and Analysis of DIA-Based Proteomic Data: A Comprehensive Survey in 2023.

机构信息

iHuman Institute, ShanghaiTech University, Shanghai, China; School of Life Science and Technology, ShanghaiTech University, Shanghai, China.

出版信息

Mol Cell Proteomics. 2024 Feb;23(2):100712. doi: 10.1016/j.mcpro.2024.100712. Epub 2024 Jan 3.

Abstract

Data-independent acquisition (DIA) mass spectrometry (MS) has emerged as a powerful technology for high-throughput, accurate, and reproducible quantitative proteomics. This review provides a comprehensive overview of recent advances in both the experimental and computational methods for DIA proteomics, from data acquisition schemes to analysis strategies and software tools. DIA acquisition schemes are categorized based on the design of precursor isolation windows, highlighting wide-window, overlapping-window, narrow-window, scanning quadrupole-based, and parallel accumulation-serial fragmentation-enhanced DIA methods. For DIA data analysis, major strategies are classified into spectrum reconstruction, sequence-based search, library-based search, de novo sequencing, and sequencing-independent approaches. A wide array of software tools implementing these strategies are reviewed, with details on their overall workflows and scoring approaches at different steps. The generation and optimization of spectral libraries, which are critical resources for DIA analysis, are also discussed. Publicly available benchmark datasets covering global proteomics and phosphoproteomics are summarized to facilitate performance evaluation of various software tools and analysis workflows. Continued advances and synergistic developments of versatile components in DIA workflows are expected to further enhance the power of DIA-based proteomics.

摘要

数据非依赖性采集(DIA)质谱(MS)已成为高通量、准确和可重复的定量蛋白质组学的强大技术。本综述全面介绍了 DIA 蛋白质组学在实验和计算方法方面的最新进展,包括从数据采集方案到分析策略和软件工具。根据前体隔离窗口的设计,将 DIA 采集方案分为宽窗口、重叠窗口、窄窗口、基于扫描四极杆和并行累积-串联碎裂增强的 DIA 方法。对于 DIA 数据分析,主要策略分为谱重构、基于序列的搜索、基于文库的搜索、从头测序和测序独立方法。对实现这些策略的各种软件工具进行了综述,详细介绍了它们在不同步骤的整体工作流程和评分方法。还讨论了光谱库的生成和优化,这对于 DIA 分析是至关重要的资源。总结了涵盖全球蛋白质组学和磷酸化蛋白质组学的公开基准数据集,以促进各种软件工具和分析工作流程的性能评估。预计 DIA 工作流程中各种多功能组件的持续发展和协同发展将进一步增强基于 DIA 的蛋白质组学的功能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5ec1/10847697/6609dc79d7fb/ga1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验