Feng Dazhi, Liu Bo, Chen Zhiwei, Xu Jinyi, Geng Meiyu, Duan Wenhu, Ai Jing, Zhang Hefeng
Department of Medicinal Chemistry, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai, China.
State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, China.
J Biomol Struct Dyn. 2025 May;43(8):4152-4164. doi: 10.1080/07391102.2024.2301754. Epub 2024 Jan 10.
Hematopoietic progenitor kinase 1 (HPK1) is a key negative regulator of T-cell receptor (TCR) signaling and a promising target for cancer immunotherapy. The development of novel HPK1 inhibitors is challenging yet promising. In this study, we used a combination of machine learning (ML)-based virtual screening and free energy perturbation (FEP) calculations to identify novel HPK1 inhibitors. ML-based screening yielded 10 potent HPK1 inhibitors (IC < 1 μM). The FEP-guided modification of the in-house false-positive hit, , revealed that a single key atom change could trigger activity cliffs. The resulting was a potent HPK1 inhibitor (IC = 2.1 nM) and potently inhibited cellular HPK1 signaling and enhanced T-cell function. Molecular dynamics (MD) simulations and ADME predictions confirmed as candidate compound. This study provides new strategies and chemical scaffolds for HPK1 inhibitor development.
造血祖细胞激酶1(HPK1)是T细胞受体(TCR)信号传导的关键负调节因子,也是癌症免疫治疗的一个有前景的靶点。新型HPK1抑制剂的开发具有挑战性但前景广阔。在本研究中,我们结合基于机器学习(ML)的虚拟筛选和自由能扰动(FEP)计算来鉴定新型HPK1抑制剂。基于ML的筛选产生了10种有效的HPK1抑制剂(IC<1μM)。对内部假阳性命中物进行FEP引导的修饰,结果表明单个关键原子的变化可能引发活性断崖。得到的化合物是一种有效的HPK1抑制剂(IC = 2.1 nM),能有效抑制细胞内HPK1信号传导并增强T细胞功能。分子动力学(MD)模拟和ADME预测证实该化合物为候选化合物。本研究为HPK1抑制剂的开发提供了新策略和化学骨架。